Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 46(3): 1352-60, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22242694

RESUMEN

Supplements and growth promotants containing steroid hormones are routinely administered to beef cattle to improve feeding efficiency, reduce behavioral problems, and enhance production. As a result, beef cattle manure will contain both synthetic steroids as well as a range of endogenous steroids including androgens, estrogens, and progestogens. A two-year controlled study was conducted in which beef cattle were administered steroid hormones via subcutaneous implants and feed additives and the occurrence of 16 endogenous and synthetic steroid hormones and metabolites was evaluated in runoff from beef cattle feedlots and in manure and soil collected from feedlot surfaces. Samples were extracted and analyzed using liquid chromatography tandem mass spectrometryfor metabolites of the synthetic androgen trenbolone acetate, 17α-trenbolone, 17ß-trenbolone, for the nonsteroidal semisynthetic estrogen agonist, α-zearalanol, and the synthetic progesterone melengesterol acetate, as well as a wide range of endogeneous estrogens, androgens, and fusarium metabolites. Synthetic steroids including trenbolone metabolites and melengestrol acetate were detected in fresh manure and in feedlot surface soils from cattle administered synthetic steroids at concentrations up to 55 ± 22 ng/g dry weight (dw) (17α-trenbolone) and 6.5 ± 0.4 ng/g dw (melengesterol acetate). Melengesterol acetate was detected in 6% of runoff samples from feedlots holding cattle administered synthetic steroids at concentrations ranging up to 115 ng/L. The presence of melengesterol acetate in runoff from beef cattle feeding operations has not been previously reported. Synthetic steroids were not detected in manure or runoff from control cattle. A wide range of endogenous hormones were detected in runoff and feedlot surface soils and manure from cattle given synthetic steroids and from control cattle, with no statistically significant differences in concentration. These results indicate that runoff from confined animal production facilities is of environmental and public health concern regardless of the use of growth promotants.


Asunto(s)
Agricultura/métodos , Suplementos Dietéticos/análisis , Monitoreo del Ambiente/estadística & datos numéricos , Hormonas Esteroides Gonadales/análisis , Estiércol/análisis , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis , Animales , Bovinos , Cromatografía Liquida , Monitoreo del Ambiente/métodos , Hormonas Esteroides Gonadales/agonistas , Sustancias de Crecimiento/análisis , Acetato de Melengestrol/análisis , Espectrometría de Masas en Tándem , Acetato de Trembolona/análisis , Zeranol/análisis
2.
J Environ Qual ; 33(4): 1424-30, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15254125

RESUMEN

Land application of animal manures and fertilizers has resulted in an increased potential for excessive P losses in runoff to nutrient-sensitive surface waters. The purpose of this research was to measure P losses in runoff from a bare Piedmont soil in the southeastern United States receiving broiler litter or inorganic P fertilizer either incorporated or surface-applied at varying P application rates (inorganic P, 0-110 kg P ha(-1); broiler litter, 0-82 kg P ha(-1)). Rainfall simulation was applied at a rate of 76 mm h(-1). Runoff samples were collected at 5-min intervals for 30 min and analyzed for reactive phosphorus (RP), algal-available phosphorus (AAP), and total phosphorus (TP). Incorporation of both P sources resulted in P losses not significantly different than the unfertilized control at all application rates. Incorporation of broiler litter decreased flow-weighted concentration of RP in runoff by 97% and mass loss of TP in runoff by 88% compared with surface application. Surface application of broiler litter resulted in runoff containing between 2.3 and 21.8 mg RP L(-1) for application rates of 8 to 82 kg P ha(-1), respectively. Mass loss of TP in runoff from surface-applied broiler litter ranged from 1.3 to 8.5 kg P ha(-1) over the same application rates. Flow-weighted concentrations of RP and mass losses of TP in runoff were not related to application rate when inorganic P fertilizer was applied to the soil surface. Results for this study can be used by P loss assessment tools to fine-tune P source, application rate, and application method site factors, and to estimate extreme-case P loss from cropland receiving broiler litter and inorganic P fertilizers.


Asunto(s)
Fertilizantes , Fósforo/análisis , Contaminantes del Suelo/análisis , Contaminantes del Agua/análisis , Agricultura , Animales , Disponibilidad Biológica , Pollos , Eucariontes/fisiología , Estiércol , Lluvia , Eliminación de Residuos , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA