Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microbiol Res ; 246: 126703, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33482437

RESUMEN

Production and release of organic acids and phosphatase enzymes by microbes are important for inorganic and organic phosphorus cycling in soil. The presence of microorganisms with corresponding traits in the plant rhizosphere lead to improved plant P uptake and ultimately growth promotion. We studied the potential of two rhizosphere-competent strains, Pantoea sp. MR1 and Ochrobactrum sp. SSR, for solubilization of different organic and inorganic P sources in vitro. In a pot experiment we further revealed the impact of the two strains on wheat seedling performance in soil amended with either phytate, rock phosphate or K2HPO4 as solely P source. To directly link P-solubilizing activity to the strain-specific genetic potential, we designed novel primers for glucose dehydrogenase (gcd), phosphatase (pho) and phytase (phy) genes, which are related to the organic and inorganic P solubilization potential. Quantitative tracing of these functional genes in the inoculated soils of the conducted pot experiment further allowed to compare strain abundances in the soil in dependency on the present P source. We observed strain- and P source-dependent patterns of the P solubilization in vitro as well as in the pot experiment, whereby P release, particularly from phytate, was linked to the strain abundance. We further revealed that the activity of microbial phosphatases is determined by the interplay between functional gene abundance, available soil P, and substrate availability. Moreover, positive impacts of microbial seed inoculation on wheat root architecture and aboveground growth parameters were observed. Our results suggest that screening for rhizosphere-competent strains with gcd, pho and phy genes may help to identify new microbial taxa that are able to solubilize and mineralize inorganic as well as organic bound P. Subsequently, the targeted use of corresponding strains may improve P availability in agricultural soils and consequently reduce fertilizer application.


Asunto(s)
Ochrobactrum/genética , Pantoea/genética , Fósforo/metabolismo , Triticum/crecimiento & desarrollo , 6-Fitasa/genética , Proteínas Bacterianas/genética , Glucosa 1-Deshidrogenasa/genética , Ochrobactrum/enzimología , Pantoea/enzimología , Fosfatos/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Filogenia , Ácido Fítico/metabolismo , Raíces de Plantas/microbiología , Rizosfera , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Suelo/química , Microbiología del Suelo , Triticum/metabolismo
2.
Microbiol Res ; 223-225: 1-12, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31178042

RESUMEN

Phosphorus (P) is an essential plant nutrient, but often limited in soils for plant uptake. A major economic constraint in the rice production is excessive use of chemical fertilizers to meet the P requirement. Bioaugmentation of phosphate solubilizing rhizobacteria (PSB) can be used as promising alternative. In the present study 11 mineral PSB were isolated from Basmati rice growing areas of Pakistan. In broth medium, PSB solubilized tricalcium phosphate (27-354 µg mL-1) with concomitant decrease in pH up to 3.6 due to the production of different organic acids, predominantly gluconic acid. Of these, 4 strains also have ability to mineralize phytate (245-412 µg mL-1). Principle component analysis showed that the gluconic acid producing PSB strains (Acinetobacter sp. MR5 and Pseudomonas sp. MR7) have pronounced effect on grain yield (up to 55%), plant P (up to 67%) and soil available P (up to 67%), with 20% reduced fertilization. For simultaneous validation of gluconic acid production by MR5 and MR7 through PCR, new specific primers were designed to amplify gcd, pqqE, pqqC genes responsible for glucose dehydrogenase (gcd) mediated phosphate solubilization. These findings for the first time demonstrated Acinetobacter soli as potent P solubilizer for rice and expands our knowledge about genus specific pqq and gcd primers. These two gcd containing PSB Acinetobacter sp. MR5 (DSM 106631) and Pseudomonas sp. MR7 (DSM 106634) submitted to German culture collection (DSMZ), serve as global valuable pool to significantly increase the P uptake, growth and yield of Basmati rice with decreased dependence on chemical fertilizer in P deficit agricultural soils.


Asunto(s)
Biofortificación , Glucosa 1-Deshidrogenasa/genética , Oryza/crecimiento & desarrollo , Fósforo/metabolismo , Acinetobacter/genética , Agricultura , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Proteínas Bacterianas/genética , Transporte Biológico , Medios de Cultivo , Fertilizantes , Germinación , Gluconatos/metabolismo , Concentración de Iones de Hidrógeno , Pakistán , Fosfatos/metabolismo , Pseudomonas/genética , Semillas/crecimiento & desarrollo , Suelo/química , Microbiología del Suelo , Solubilidad
3.
J Exp Bot ; 69(21): 4993-4996, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30312462
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA