Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Hazard Mater ; 172(2-3): 1175-84, 2009 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-19709804

RESUMEN

Iron-based mesoporous silica materials were prepared according to different impregnation and co-condensation procedures. Several complementary techniques, including XRD, TEM/EDX and nitrogen sorption isotherms were used to evaluate the final structural and textural properties of the calcined Fe/SBA-15 materials. While Fe(2)O(3) isolated particles of which the size is close to the silica pore diameter ( approximately 7-8 nm) were obtained using classical wet impregnation procedure, smaller iron oxide particles ( approximately 2-4 nm) homogeneously dispersed within the hexagonal pore structure of the SBA15 host support were generated by self-combustion of an impregnated iron-glycinic complex. By contrast, the various co-condensation routes used in this work were less efficient to generate iron oxide nanoparticles inside the silica mesopores. Catalytic performances of the materials were evaluated in the case of total phenol oxidation by H(2)O(2) in aqueous solution at ambient conditions. Large differences in terms of catalytic activity and iron species stability were observed. While the impregnated solids proved to be the most active catalysts (highest Fe(2)O(3) nanoparticles dispersion), iron leaching was observed in aqueous solution, accounting for a homogeneous catalytic contribution. In contrast, the co-condensed samples exhibiting larger iron oxide clusters stabilized over the silica surface proved more efficient as active sites in Fenton catalysis.


Asunto(s)
Hierro/química , Fenol/química , Dióxido de Silicio/química , Catálisis , Compuestos Férricos , Peróxido de Hidrógeno , Nanopartículas , Oxidación-Reducción , Porosidad , Soluciones , Contaminantes Químicos del Agua/química
2.
Phys Chem Chem Phys ; 10(39): 5983-92, 2008 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-18825286

RESUMEN

Mn-based oxide supports were synthesized using different procedures: (i) carbonate co-precipitation method, leading to the formation of a hexaaluminate crystallized solid (La(0.2)Sr(0.3)Ba(0.5)MnAl(11)O(19)) and (ii) solid-solid diffusion method, leading to the formation of a doped theta-Al(2)O(3) crystallized solid (nominal composition: 60 wt% La(0.2)Sr(0.3)Ba(0.5)MnAl(11)O(19) + 40 wt% Al(2)O(3)). Impregnation of 1.0 wt%Pd was carried out on both oxides. The solids were tested for the catalytic methane combustion up to 700 degrees C. It was observed that adding palladium resulted in an important increase in the catalytic activity. The combined use of H(2)-TPR and XPS techniques reveals that only Mn(3+)/Mn(2+) redox "couple" is present in the solids, whatever the synthesis procedure used. The fraction Mn(3+)/Mn is proportional to the total Mn content in the solid support, whatever the sample structure (hexaaluminate or doped theta-Al(2)O(3)) and its morphology (large crystals or aggregates of small particles, respectively). Pd impregnation and further calcination at 650 degrees C has no significant effect on the Mn(3+)/Mn fraction. However, some changes in Mn(3+) reduction profile are observed, depending on the solid structure. Indeed, palladium addition strongly affects the manganese reducibility with an important shift of the reduction process to lower temperatures (approximately 100 degrees C). On the basis of redox properties observed for the different catalysts, a Mars-van-Krevelen redox mechanism, with oxygen transfer from support oxides to palladium particles, is proposed to explain the difference in terms of catalytic conversion and stability with respect to a 1.0 wt%Pd/Al(2)O(3) reference sample.


Asunto(s)
Compuestos de Manganeso/química , Metano/química , Paladio/química , Óxido de Aluminio/química , Compuestos de Manganeso/síntesis química , Oxidación-Reducción , Óxidos/química , Tamaño de la Partícula , Espectrofotometría , Propiedades de Superficie , Temperatura , Termodinámica , Factores de Tiempo , Difracción de Rayos X , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA