Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotoxicology ; 11(3): 313-326, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28277982

RESUMEN

Carbon nanotubes (CNTs), a prototypical engineered nanomaterial, have been increasingly manufactured for a variety of novel applications over the past two decades. However, since CNTs possess fiber-like shape and cause pulmonary fibrosis in rodents, there is concern that mass production of CNTs will lead to occupational exposure and associated pulmonary diseases. The aim of this study was to use contemporary proteomics to investigate the mechanisms of cellular response in E10 mouse alveolar epithelial cells in vitro after exposure to multi-walled CNTs (MWCNTs) that were functionalized by atomic layer deposition (ALD). ALD is a method used to generate highly uniform and conformal nanoscale thin-film coatings of metals to enhance novel conductive properties of CNTs. We hypothesized that specific types of metal oxide coatings applied to the surface of MWCNTs by ALD would determine distinct proteomic profiles in mouse alveolar epithelial cells in vitro that could be used to predict oxidative stress and pulmonary inflammation. Uncoated (U)-MWCNTs were functionalized by ALD with zinc oxide (ZnO) to yield Z-MWCNTs or aluminum oxide (Al2O3) to yield A-MWCNTs. Significant differential protein expression was found in the following critical pathways: mTOR/eIF4/p70S6K signaling and Nrf-2 mediated oxidative stress response increased following exposure to Z-MWCNTs, interleukin-1 signaling increased following U-MWCNT exposure, and inhibition of angiogenesis by thrombospondin-1, oxidative phosphorylation, and mitochondrial dysfunction increased following A-MWCNT exposure. This study demonstrates that specific types of metal oxide thin film coatings applied by ALD produce distinct cellular and biochemical responses related to lung inflammation and fibrosis compared to uncoated MWCNT exposure in vitro.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Nanotubos de Carbono/toxicidad , Proteómica/métodos , Óxido de Aluminio/toxicidad , Células Epiteliales Alveolares/química , Animales , Células Cultivadas , Ratones , Fibrosis Pulmonar/etiología , Óxido de Zinc/toxicidad
2.
PLoS One ; 9(9): e106870, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25216247

RESUMEN

BACKGROUND: Multi-walled carbon nanotubes (MWCNTs) pose a possible human health risk for lung disease as a result of inhalation exposure. Mice exposed to MWCNTs develop pulmonary fibrosis. Lung macrophages engulf MWCNTs and produce pro-fibrogenic cytokines including interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α, and osteopontin (OPN). Atomic layer deposition (ALD) is a novel process used to enhance functional properties of MWCNTs, yet the consequence of ALD-modified MWCNTs on macrophage biology and fibrosis is unknown. METHODS: The purpose of this study was to determine whether ALD coating with aluminum oxide (Al2O3) would alter the fibrogenic response to MWCNTs and whether cytokine expression in human macrophage/monocytes exposed to MWCNTs in vitro would predict the severity of lung fibrosis in mice. Uncoated (U)-MWCNTs or ALD-coated (A)-MWCNTs were incubated with THP-1 macrophages or human peripheral blood mononuclear cells (PBMC) and cell supernatants assayed for cytokines by ELISA. C57BL6 mice were exposed to a single dose of A- or U-MWCNTs by oropharyngeal aspiration (4 mg/kg) followed by evaluation of histopathology, lung inflammatory cell counts, and cytokine levels at day 1 and 28 post-exposure. RESULTS: ALD coating of MWCNTs with Al2O3 enhanced IL-1ß secretion by THP-1 and PBMC in vitro, yet reduced protein levels of IL-6, TNF-α, and OPN production by THP-1 cells. Moreover, Al2O3 nanoparticles, but not carbon black NPs, increased IL-1ß but decreased OPN and IL-6 in THP-1 and PBMC. Mice exposed to U-MWCNT had increased levels of all four cytokines assayed and developed pulmonary fibrosis by 28 days, whereas ALD-coating significantly reduced fibrosis and cytokine levels at the mRNA or protein level. CONCLUSION: These findings indicate that ALD thin film coating of MWCNTs with Al2O3 reduces fibrosis in mice and that in vitro phagocyte expression of IL-6, TNF-α, and OPN, but not IL-1ß, predict MWCNT-induced fibrosis in the lungs of mice in vivo.


Asunto(s)
Óxido de Aluminio/farmacología , Citocinas/metabolismo , Leucocitos Mononucleares/metabolismo , Nanotecnología/métodos , Nanotubos de Carbono/química , Fagocitos/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , Humanos , Inflamación/patología , Interleucina-1beta/biosíntesis , Interleucina-6/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/ultraestructura , Ratones Endogámicos C57BL , Nanotubos de Carbono/ultraestructura , Osteopontina/metabolismo , Fagocitos/efectos de los fármacos , Fibrosis Pulmonar , Hollín/farmacología , Propiedades de Superficie , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA