Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Exp Neurol ; 314: 58-66, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30660616

RESUMEN

Acute inflammation induces sensitization of nociceptive neurons and triggers the accumulation of calcium permeable (CP) α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) in the dorsal horn of the spinal cord. This coincides with behavioral signs of acute inflammatory pain, but whether CP-AMPARs contribute to chronic pain remains unclear. To evaluate this question, we first constructed current-voltage (IV) curves of C-fiber stimulus-evoked, AMPAR-mediated EPSCs in lamina II to test for inward rectification, a key characteristic of CP-AMPARs. We found that the intraplantar injection of complete Freund's adjuvant (CFA) induced an inward rectification at 3 d that persisted to 21 d after injury. Furthermore, the CP- AMPAR antagonist IEM-1460 (50 µM) inhibited AMPAR-evoked Ca2+ transients 21d after injury but had no effect in uninflamed mice. We then used a model of long-lasting vulnerability for chronic pain that is determined by the balance between latent central sensitization (LCS) and mu opioid receptor constitutive activity (MORCA). When administered 21 d after the intraplantar injection of CFA, intrathecal administration of the MORCA inverse agonist naltrexone (NTX, 1 µg, i.t.) reinstated mechanical hypersensitivity, and superfusion of spinal cord slices with NTX (10 µM) increased the peak amplitude of AMPAR-evoked Ca2+ transients in lamina II neurons. The CP-AMPAR antagonist naspm (0-10 nmol, i.t.) inhibited these NTX-induced increases in mechanical hypersensitivity. NTX had no effect in uninflamed mice. Subsequent western blot analysis of the postsynaptic density membrane fraction from lumbar dorsal horn revealed that CFA increased GluA1 expression at 2 d and GluA4 expression at both 2 and 21 d post-injury, indicating that not just the GluA1 subunit, but also the GluA4 subunit, contributes to the expression of CP-AMPARs and synaptic strength during hyperalgesia. GluA2 expression increased at 21 d, an unexpected result that requires further study. We conclude that after tissue injury, dorsal horn AMPARs retain a Ca2+ permeability that underlies LCS. Because of their effectiveness in reducing naltrexone-induced reinstatement of hyperalgesia and potentiation of AMPAR-evoked Ca2+ signals, CP-AMPAR inhibitors are a promising class of agents for the treatment of chronic inflammatory pain.


Asunto(s)
Calcio/metabolismo , Dolor Crónico/fisiopatología , Receptores AMPA/metabolismo , Receptores Opioides/metabolismo , Médula Espinal/metabolismo , Médula Espinal/fisiopatología , Adamantano/análogos & derivados , Adamantano/farmacología , Animales , Dolor Crónico/inducido químicamente , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Adyuvante de Freund , Masculino , Ratones , Ratones Endogámicos C57BL , Naltrexona/farmacología , Antagonistas de Narcóticos/farmacología , Fibras Nerviosas Amielínicas , Nocicepción , Células del Asta Posterior/efectos de los fármacos , Receptores AMPA/antagonistas & inhibidores , Receptores de Glutamato/metabolismo , Sinapsis/efectos de los fármacos
2.
J Neurotrauma ; 35(15): 1800-1818, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29648982

RESUMEN

Our previous studies reported that pharmacological maintenance of mitochondrial bioenergetics after experimental spinal cord injury (SCI) provided functional neuroprotection. Recent evidence indicates that endogenous mitochondrial transfer is neuroprotective as well, and, therefore, we extended these studies with a novel approach to transplanting exogenous mitochondria into the injured rat spinal cord. Using a rat model of L1/L2 contusion SCI, we herein report that transplantation of exogenous mitochondria derived from either cell culture or syngeneic leg muscle maintained acute bioenergetics of the injured spinal cord in a concentration-dependent manner. Moreover, transplanting transgenically labeled turbo green fluorescent (tGFP) PC12-derived mitochondria allowed for visualization of their incorporation in both a time-dependent and cell-specific manner at 24 h, 48 h, and 7 days post-injection. tGFP mitochondria co-localized with multiple resident cell types, although they were absent in neurons. Despite their contribution to the maintenance of normal bioenergetics, mitochondrial transplantation did not yield long-term functional neuroprotection as assessed by overall tissue sparing or recovery of motor and sensory functions. These experiments are the first to investigate mitochondrial transplantation as a therapeutic approach to treating spinal cord injury. Our initial bioenergetic results are encouraging, and although they did not translate into improved long-term outcome measures, caveats and technical hurdles are discussed that can be addressed in future studies to potentially increase long-term efficacy of transplantation strategies.


Asunto(s)
Metabolismo Energético/fisiología , Mitocondrias/trasplante , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Femenino , Ratas , Ratas Sprague-Dawley
3.
J Pain ; 17(3): 359-73, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26687453

RESUMEN

UNLABELLED: Thiazolidinedione drugs (TZDs) such as pioglitazone are approved by the U.S. Food and Drug Administration for the treatment of insulin resistance in type 2 diabetes. However, whether TZDs reduce painful diabetic neuropathy (PDN) remains unknown. Therefore, we tested the hypothesis that chronic administration of pioglitazone would reduce PDN in Zucker Diabetic Fatty (ZDF(fa/fa) [ZDF]) rats. Compared with Zucker Lean (ZL(fa/+)) controls, ZDF rats developed: (1) increased blood glucose, hemoglobin A1c, methylglyoxal, and insulin levels; (2) mechanical and thermal hyperalgesia in the hind paw; (3) increased avoidance of noxious mechanical probes in a mechanical conflict avoidance behavioral assay, to our knowledge, the first report of a measure of affective-motivational pain-like behavior in ZDF rats; and (4) exaggerated lumbar dorsal horn immunohistochemical expression of pressure-evoked phosphorylated extracellular signal-regulated kinase. Seven weeks of pioglitazone (30 mg/kg/d in food) reduced blood glucose, hemoglobin A1c, hyperalgesia, and phosphorylated extracellular signal-regulated kinase expression in ZDF. To our knowledge, this is the first report to reveal hyperalgesia and spinal sensitization in the same ZDF animals, both evoked by a noxious mechanical stimulus that reflects pressure pain frequently associated with clinical PDN. Because pioglitazone provides the combined benefit of reducing hyperglycemia, hyperalgesia, and central sensitization, we suggest that TZDs represent an attractive pharmacotherapy in patients with type 2 diabetes-associated pain. PERSPECTIVE: To our knowledge, this is the first preclinical report to show that: (1) ZDF rats exhibit hyperalgesia and affective-motivational pain concurrent with central sensitization; and (2) pioglitazone reduces hyperalgesia and spinal sensitization to noxious mechanical stimulation within the same subjects. Further studies are needed to determine the anti-PDN effect of TZDs in humans.


Asunto(s)
Analgésicos/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Neuropatías Diabéticas/tratamiento farmacológico , Hiperalgesia/prevención & control , Células del Asta Posterior/efectos de los fármacos , Tiazolidinedionas/farmacología , Administración Oral , Animales , Sensibilización del Sistema Nervioso Central/efectos de los fármacos , Sensibilización del Sistema Nervioso Central/fisiología , Frío , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas/fisiopatología , Evaluación Preclínica de Medicamentos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Calor , Hiperalgesia/fisiopatología , Masculino , Dolor Nociceptivo/tratamiento farmacológico , Dolor Nociceptivo/fisiopatología , Fosforilación , Pioglitazona , Células del Asta Posterior/fisiología , Ratas Zucker , Tacto
4.
Pain ; 156(3): 469-482, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25599238

RESUMEN

Repeated administration of peroxisome proliferator-activated receptor gamma (PPARγ) agonists reduces neuropathic pain-like behavior and associated changes in glial activation in the spinal cord dorsal horn. As PPARγ is a nuclear receptor, sustained changes in gene expression are widely believed to be the mechanism of pain reduction. However, we recently reported that a single intrathecal (i.t.) injection of pioglitazone, a PPARγ agonist, reduced hyperalgesia within 30 minutes, a time frame that is typically less than that required for genomic mechanisms. To determine the very rapid antihyperalgesic actions of PPARγ activation, we administered pioglitazone to rats with spared nerve injury and evaluated hyperalgesia. Pioglitazone inhibited hyperalgesia within 5 minutes of injection, consistent with a nongenomic mechanism. Systemic or i.t. administration of GW9662, a PPARγ antagonist, inhibited the antihyperalgesic actions of intraperitoneal or i.t. pioglitazone, suggesting a spinal PPARγ-dependent mechanism. To further address the contribution of nongenomic mechanisms, we blocked new protein synthesis in the spinal cord with anisomycin. When coadministered intrathecally, anisomycin did not change pioglitazone antihyperalgesia at an early 7.5-minute time point, further supporting a rapid nongenomic mechanism. At later time points, anisomycin reduced pioglitazone antihyperalgesia, suggesting delayed recruitment of genomic mechanisms. Pioglitazone reduction of spared nerve injury-induced increases in GFAP expression occurred more rapidly than expected, within 60 minutes. We are the first to show that activation of spinal PPARγ rapidly reduces neuropathic pain independent of canonical genomic activity. We conclude that acute pioglitazone inhibits neuropathic pain in part by reducing astrocyte activation and through both genomic and nongenomic PPARγ mechanisms.


Asunto(s)
Astrocitos/efectos de los fármacos , Hipoglucemiantes/uso terapéutico , Neuralgia/tratamiento farmacológico , PPAR gamma/metabolismo , Tiazolidinedionas/uso terapéutico , Análisis de Varianza , Enfermedades de los Animales , Animales , Área Bajo la Curva , Astrocitos/metabolismo , Capsaicina/farmacología , Proteína Ácida Fibrilar de la Glía/metabolismo , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Inyecciones Intraventriculares , Masculino , Neuralgia/complicaciones , Neuralgia/patología , Nocicepción/efectos de los fármacos , Proteínas Oncogénicas v-fos/metabolismo , Umbral del Dolor/efectos de los fármacos , Pioglitazona , Desempeño Psicomotor/efectos de los fármacos , Desempeño Psicomotor/fisiología , Ratas , Ratas Sprague-Dawley , Asta Dorsal de la Médula Espinal/metabolismo , Asta Dorsal de la Médula Espinal/patología
5.
Behav Pharmacol ; 20(8): 755-8, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19773645

RESUMEN

Ranolazine modulates the cardiac voltage-gated sodium channel (NaV 1.5) and is approved by the FDA in the treatment of ischemic heart disease. Ranolazine also targets neuronal (NaV 1.7, 1.8) isoforms that are implicated in neuropathic pain. Therefore, we determined the analgesic efficacy of ranolazine in a preclinical animal model of neuropathic pain. Both intraperitoneal and oral administration of ranolazine dose-dependently inhibited the mechanical and cold allodynia associated with spared nerve injury, without producing ataxia or other behavioral side effects. These data warrant clinical investigation of the potential use of ranolazine in the treatment of neuropathic pain.


Asunto(s)
Acetanilidas/administración & dosificación , Conducta Animal/efectos de los fármacos , Neuralgia/tratamiento farmacológico , Piperazinas/administración & dosificación , Acetanilidas/farmacología , Acetanilidas/uso terapéutico , Animales , Ataxia/inducido químicamente , Frío , Evaluación Preclínica de Medicamentos , Inyecciones Intraperitoneales , Inyecciones Subcutáneas , Masculino , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/fisiopatología , Dimensión del Dolor , Umbral del Dolor/efectos de los fármacos , Estimulación Física , Piperazinas/farmacología , Piperazinas/uso terapéutico , Distribución Aleatoria , Ranolazina , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/efectos de los fármacos , Bloqueadores de los Canales de Sodio/administración & dosificación , Bloqueadores de los Canales de Sodio/farmacología , Bloqueadores de los Canales de Sodio/uso terapéutico
6.
Pain ; 96(3): 353-363, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11973010

RESUMEN

Inflammation induces an up-regulation of neuropeptide tyrosine (NPY) and its receptors in the dorsal horn, suggesting an important role in nociceptive transmission. Our initial studies revealed that NPY dose-dependently increased hotplate response latency, and to a lesser degree, thermal paw withdrawal latency (PWL); these effects occurred at doses that affect neither motor coordination (as assessed by the rotarod test) nor paw skin temperature. We next evaluated the behavioral effects of intrathecal administration of NPY and NPY antagonists with the aim of assessing the contribution of NPY to correlates of persistent nociception associated with the unilateral plantar injection of carrageenan or complete Freund's adjuvant (CFA). NPY robustly and dose-dependently increased PWL on the side ipsilateral to carrageenan injection, with only a small effect on the contralateral side. Similarly, NPY (30 microg) produced a large and long-lasting increase in PWL on the side ipsilateral to CFA injection (140% change), with only a small effect on the contralateral side (25% change). The ipsilateral effect of NPY was completely inhibited with the potent Y1 antagonist, BIBO 3304 (3 microg), but not the Y2 antagonist, BIIE 0246. When administered alone, BIBO 3304 (but not BIIE 0246) slightly decreased thermal PWL on the side ipsilateral (25% change), but not contralateral, to CFA injection; this suggests that inflammation strengthens inhibitory NPY tone. We conclude that spinal Y1 receptors contribute to the inhibitory effects of NPY on thermal hypersensitivity in the awake rat. Further studies are necessary to determine whether enhanced release of NPY and Y1-mediated inhibition of spinal nociceptive transmission ultimately results in a compensatory, adaptive inhibition of thermal hypersensitivity in the setting of inflammation.


Asunto(s)
Hiperalgesia/tratamiento farmacológico , Neuropéptido Y/farmacología , Receptores de Neuropéptido Y/metabolismo , Enfermedad Aguda , Animales , Arginina/análogos & derivados , Arginina/farmacología , Temperatura Corporal/efectos de los fármacos , Carragenina , Modelos Animales de Enfermedad , Adyuvante de Freund , Calor , Hiperalgesia/inducido químicamente , Inyecciones Espinales , Masculino , Actividad Motora/efectos de los fármacos , Inflamación Neurogénica/inducido químicamente , Inflamación Neurogénica/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley , Receptores de Neuropéptido Y/antagonistas & inhibidores , Médula Espinal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA