Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Nutr Soc ; 82(1): 1-12, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35983618

RESUMEN

In this review, the relevance of selenium (Se) to viral disease will be discussed paying particular attention to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease (COVID-19). Se, the active centre in selenoproteins has an ongoing history of reducing the incidence and severity of viral infections. Host Se deficiency increased the virulence of RNA viruses such as influenza A and coxsackievirus B3, the latter of which is implicated in the development of Keshan disease in north-east China. Significant clinical benefits of Se supplementation have been demonstrated in HIV-1, in liver cancer linked to hepatitis B, and in Chinese patients with hantavirus that was successfully treated with oral sodium selenite. China is of particular interest because it has populations that have both the lowest and the highest Se status in the world. We found a significant association between COVID-19 cure rate and background Se status in Chinese cities; the cure rate continued to rise beyond the Se intake required to optimise selenoproteins, suggesting an additional mechanism. Se status was significantly higher in serum samples from surviving than non-surviving COVID-19 patients. As regards mechanism, SARS-CoV-2 may interfere with the human selenoprotein system; selenoproteins are important in scavenging reactive oxygen species, controlling immunity, reducing inflammation, ferroptosis and endoplasmic reticulum (ER) stress. We found that SARS-CoV-2 significantly suppressed mRNA expression of GPX4, of the ER selenoproteins, SELENOF, SELENOM, SELENOK and SELENOS and down-regulated TXNRD3. Based on the available data, both selenoproteins and redox-active Se species (mimicking ebselen, an inhibitor of the main SARS-CoV-2 protease that enables viral maturation within the host) could employ their separate mechanisms to attenuate virus-triggered oxidative stress, excessive inflammatory responses and immune-system dysfunction, thus improving the outcome of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Selenio , Virosis , Humanos , Selenio/farmacología , Selenio/uso terapéutico , SARS-CoV-2/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo
2.
Redox Biol ; 37: 101715, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32992282

RESUMEN

Selenium is a trace element essential to human health largely because of its incorporation into selenoproteins that have a wide range of protective functions. Selenium has an ongoing history of reducing the incidence and severity of various viral infections; for example, a German study found selenium status to be significantly higher in serum samples from surviving than non-surviving COVID-19 patients. Furthermore, a significant, positive, linear association was found between the cure rate of Chinese patients with COVID-19 and regional selenium status. Moreover, the cure rate continued to rise beyond the selenium intake required to optimise selenoproteins, suggesting that selenoproteins are probably not the whole story. Nonetheless, the significantly reduced expression of a number of selenoproteins, including those involved in controlling ER stress, along with increased expression of IL-6 in SARS-CoV-2 infected cells in culture suggests a potential link between reduced selenoprotein expression and COVID-19-associated inflammation. In this comprehensive review, we describe the history of selenium in viral infections and then go on to assess the potential benefits of adequate and even supra-nutritional selenium status. We discuss the indispensable function of the selenoproteins in coordinating a successful immune response and follow by reviewing cytokine excess, a key mediator of morbidity and mortality in COVID-19, and its relationship to selenium status. We comment on the fact that the synthetic redox-active selenium compound, ebselen, has been found experimentally to be a strong inhibitor of the main SARS-CoV-2 protease that enables viral maturation within the host. That finding suggests that redox-active selenium species formed at high selenium intake might hypothetically inhibit SARS-CoV-2 proteases. We consider the tactics that SARS-CoV-2 could employ to evade an adequate host response by interfering with the human selenoprotein system. Recognition of the myriad mechanisms by which selenium might potentially benefit COVID-19 patients provides a rationale for randomised, controlled trials of selenium supplementation in SARS-CoV-2 infection.


Asunto(s)
COVID-19/inmunología , Inflamación/inmunología , Selenio/inmunología , Selenoproteínas/inmunología , Animales , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Azoles/farmacología , Azoles/uso terapéutico , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/inmunología , Citocinas/inmunología , Humanos , Inflamación/tratamiento farmacológico , Isoindoles , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/uso terapéutico , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Inhibidores de Proteasa Viral/farmacología , Inhibidores de Proteasa Viral/uso terapéutico , Tratamiento Farmacológico de COVID-19
5.
Curr Top Med Chem ; 16(13): 1530-5, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26369818

RESUMEN

Regulation of protein expression by non-coding RNAs typically involves effects on mRNA degradation and/or ribosomal translation. The possibility of virus-host mRNA-mRNA antisense tethering interactions (ATI) as a gain-of-function strategy, via the capture of functional RNA motifs, has not been hitherto considered. We present evidence that ATIs may be exploited by certain RNA viruses in order to tether the mRNAs of host selenoproteins, potentially exploiting the proximity of a captured host selenocysteine insertion sequence (SECIS) element to enable the expression of virally-encoded selenoprotein modules, via translation of in-frame UGA stop codons as selenocysteine. Computational analysis predicts thermodynamically stable ATIs between several widely expressed mammalian selenoprotein mRNAs (e.g., isoforms of thioredoxin reductase) and specific Ebola virus mRNAs, and HIV-1 mRNA, which we demonstrate via DNA gel shift assays. The probable functional significance of these ATIs is further supported by the observation that, in both viruses, they are located in close proximity to highly conserved in-frame UGA stop codons at the 3' end of open reading frames that encode essential viral proteins (the HIV-1 nef protein and the Ebola nucleoprotein). Significantly, in HIV/AIDS patients, an inverse correlation between serum selenium and mortality has been repeatedly documented, and clinical benefits of selenium in the context of multi-micronutrient supplementation have been demonstrated in several well-controlled clinical trials. Hence, in the light of our findings, the possibility of a similar role for selenium in Ebola pathogenesis and treatment merits serious investigation.


Asunto(s)
Ebolavirus/genética , VIH-1/genética , ARN sin Sentido/genética , ARN Mensajero/química , ARN Mensajero/genética , ARN Viral/genética , Selenio/metabolismo , Selenoproteínas/genética , Humanos , Termodinámica
6.
Int J Nanomedicine ; 7: 1711-21, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22619522

RESUMEN

Chemoprevention that impedes one or more steps in carcinogenesis, via long-term administration of naturally occurring or synthetic compounds, is widely considered to be a crucial strategy for cancer control. Selenium (Se) has chemopreventive effects, but its application is limited due to a low therapeutic index as shown in numerous animal experiments. In contrast to Se, which was known for its toxicity prior to the discovery of its beneficial effects, the natural compound epigallocatechin-3-gallate (EGCG) was originally considered to be nontoxic. Due to its preventive effects on many types of cancer in various animal models, EGCG has been regarded as a prime example of a promising chemopreventive agent without major toxicity concerns. However, very recently, evidence has accumulated showing that efficacious doses of EGCG used in health promotion may not be far from its toxic dose level. Therefore, both Se and EGCG need to be modified by novel pharmaceutical technologies to attain enhanced efficacy and/or reduced toxicity. Nanotechnology may be one of these technologies. In support of this hypothesis, the characteristics of polylactic acid and polyethylene glycol-encapsulated nano-EGCG and elemental Se nanoparticles dispersed by bovine serum albumin are reviewed in this article. Encapsulation of EGCG to form nano-EGCG leads to its enhanced stability in plasma and remarkably superior chemopreventive effects, with more than tenfold dose advantages in inducing apoptosis and inhibition of both angiogenesis and tumor growth. Se at nanoparticle size ("Nano-Se"), compared with Se compounds commonly used in dietary supplements, has significantly lower toxicity, without compromising its ability to upregulate selenoenzymes at nutritional levels and induce phase II enzymes at supranutritional levels.


Asunto(s)
Catequina/análogos & derivados , Quimioprevención/métodos , Nanopartículas del Metal/administración & dosificación , Nanocápsulas/administración & dosificación , Selenio/administración & dosificación , Animales , Anticarcinógenos/administración & dosificación , Catequina/administración & dosificación , Catequina/toxicidad , Bovinos , Humanos , Ratones , Nanomedicina , Neoplasias/metabolismo , Neoplasias/prevención & control , Selenoproteínas/metabolismo , Albúmina Sérica Bovina/administración & dosificación
7.
Toxicology ; 278(1): 140-59, 2010 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-19818374

RESUMEN

Many of the botanical "immunomodulators", a class of herbal medicines widely recognized in traditional medical systems such as Chinese Medicine (TCM) and Ayurvedic Medicine, alter immune function and may offer clinically relevant therapeutics or leads to therapeutics. Many of these traditional remedies are prepared from combinations of medicinal plants which may influence numerous molecular pathways. These effects may differ from the sum of effects from the individual plants and therefore, research demonstrating the effects of the formula is crucial for insights into the effects of traditional remedies. In this review we surveyed the primary literature for research that focused on combinations of medicinal plants and effects on cytokine activity. The results demonstrate that many extracts of herb mixtures have effects on at least one cytokine. The most commonly studies cytokines were IL-4, IL-6, IL-10, TNF and IFN-γ. The majority of the formulas researched derived from TCM. The following formulas had activity on at least three cytokines; Chizukit N, CKBM, Daeganghwal-tang, Food Allergy Formula, Gamcho-Sasim-Tang, Hachimi-jio-gan, Herbkines, Hochuekki, Immune System Formula, Jeo-Dang-Tang, Juzen-taiho-to, Kakkon-to, Kan jang, Mao-Bushi-Saishin-to, MSSM-002, Ninjin-youei-to, PG201, Protec, Qing-huo-bai-du-yin, Qingfu Guanjieshu, Sambucol Active Defense, Seng-fu-tang, Shin-Xiao-Xiang, Tien Hsien, Thuja formula, Unkei-to, Vigconic, Wheeze-relief-formula, Xia-Bai-San, Yangyuk-Sanhwa-Tang, Yi-fey Ruenn-hou, and Yuldahansotang. Of the western based combinations, formulas with Echinacea spp. were common and showed multiple activities. Numerous formulas demonstrated activity on both gene and protein expression. The research demonstrates that the reviewed botanical formulas modulate cytokine activity, although the bulk of the research is in vitro. Therapeutic success using these formulas may be partially due to their effects on cytokines. Further study of phytotherapy on cytokine related diseases/syndromes is necessary.


Asunto(s)
Citocinas/farmacología , Medicamentos Herbarios Chinos/farmacología , Factores Inmunológicos/farmacología , Extractos Vegetales/farmacología , Citocinas/inmunología , Humanos , Factores Inmunológicos/inmunología , Extractos Vegetales/inmunología
8.
Toxicology ; 278(2): 229-41, 2010 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-19850100

RESUMEN

Natural phytochemicals derived from dietary sources or medicinal plants have gained significant recognition in the potential management of several human clinical conditions. Much research has also been geared towards the evaluation of plant extracts as effective prophylactic agents since they can act on specific and/or multiple molecular and cellular targets. Plants have been an abundant source of highly effective phytochemicals which offer great potential in the fight against cancer by inhibiting the process of carcinogenesis through the upregulation of cytoprotective genes that encode for carcinogen detoxifying enzymes and antioxidant enzymes. The mechanistic insight into chemoprevention further includes induction of cell cycle arrest and apoptosis or inhibition of signal transduction pathways mainly the mitogen-activated protein kinases (MAPK), protein kinases C (PKC), phosphoinositide 3-kinase (PI3K), glycogen synthase kinase (GSK) which lead to abnormal cyclooxygenase-2 (COX-2), activator protein-1 (AP-1), nuclear factor-kappaB (NF-κB) and c-myc expression. Effectiveness of chemopreventive agents reflects their ability to counteract certain upstream signals that leads to genotoxic damage, redox imbalances and other forms of cellular stress. Targeting malfunctioning molecules along the disrupted signal transduction pathway in cancer represent a rational strategy in chemoprevention. NF-κB and AP-1 provide mechanistic links between inflammation and cancer, and moreover regulate tumor angiogenesis and invasiveness, indicating that signaling pathways that mediate their activation provide attractive targets for new chemotherapeutic approaches. Thus cell signaling cascades and their interacting factors have become important targets of chemoprevention and phenolic phytochemicals and plant extracts seem to be promising in this endeavor.


Asunto(s)
Anticarcinógenos/farmacología , Neoplasias/prevención & control , Extractos Vegetales/farmacología , Animales , Antineoplásicos Fitogénicos/farmacología , Suplementos Dietéticos , Sistemas de Liberación de Medicamentos , Humanos , Neoplasias/genética , Neoplasias/patología , Transducción de Señal/efectos de los fármacos
9.
Toxicology ; 278(1): 124-30, 2010 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-19857540

RESUMEN

Although several specific micronutrient deficiencies are associated with disease progression and increased mortality risk in HIV/AIDS, and even a simple multivitamin/mineral supplement can prolong survival, this is typically viewed merely as nutritional support of the immune system, and only necessary if there are deficiencies to be rectified. However, the reality is more complex. Several striking nutrient-related metabolic abnormalities have been consistently documented in HIV infection. One is chronic oxidative stress, including a drastic depletion of cysteine from the glutathione pool, and a progressive decline of serum selenium that is correlated with disease progression and mortality. Another is decreased blood levels of tryptophan, with an associated intracellular niacin deficiency. Tryptophan depletion or "deletion" by induction of indoleamine-2,3-dioxygenase (IDO), the first step in oxidative tryptophan metabolism, is a known mechanism for immune suppression that is of critical importance in cancer and pregnancy, and, potentially, in HIV/AIDS. Existing evidence supports the hypothesis that these nutrient-related metabolic abnormalities in HIV infection regarding antioxidants, selenium, sulfur, tryptophan and niacin are interrelated, because HIV-associated oxidative stress can induce niacin/NAD+ depletion via activation of poly(ADP-ribose) polymerase (PARP), which could lead to tryptophan oxidation for compensatory de novo niacin synthesis, thereby contributing to immune tolerance and T-cell loss via tryptophan deletion and PARP-induced cell death. This "oxidative stress-induced niacin sink" (OSINS) model provides a mechanism whereby the oxidative stress associated with HIV infection can contribute to immunosuppression via tryptophan deletion. This model is directly supported by evidence that antioxidants can counteract indoleamine-2,3-dioxygenase (IDO), providing the critical link between oxidative stress and tryptophan metabolism proposed here. The OSINS model can be used to guide the design of nutraceutical regimens that can effectively complement antiretroviral therapy for HIV/AIDS.


Asunto(s)
Infecciones por VIH/metabolismo , VIH-1/metabolismo , Modelos Biológicos , Niacina/metabolismo , Estrés Oxidativo/fisiología , Triptófano/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Selenio/metabolismo , Azufre/metabolismo
10.
J Inorg Biochem ; 101(10): 1457-63, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17664013

RESUMEN

It has been shown that 36 nm Nano-Se has lower toxicity than selenite or selenomethionine, but these forms of selenium (Se) all possess similar ability to increase selenoenzyme levels. The size of nanoparticles plays an important role in their biological activity: as expected, 5-200 nm Nano-Se can directly scavenge free radicals in vitro in a size-dependent fashion. However, in Se-deficient cells and Se-deficient mice, the size effect of Nano-Se on increasing selenoenzymes and liver Se disappears unexpectedly. We hypothesize that under conditions of Se deficiency, the avidity of Se uptake mechanisms may be increased to maintain the biosynthesis of selenoenzymes, which are fundamental for redox homeostasis. This increased avidity may override the potential advantage of small size Nano-Se seen under Se-replete conditions, thereby eliminating the size effect. Once selenoenzymes have been saturated, Se uptake mechanisms may downregulate; accordingly, the size effect of Nano-Se can then reappear. To test this hypothesis, Se-deficient mice were administered either 36 or 90 nm Nano-Se at supranutritional doses, in both a short-term model and a single-dose model. Under these conditions, Nano-Se showed a size effect on Se accumulation and glutathione S-transferase (GST) activity. A size effect of Nano-Se was found in 15 out of 18 total comparisons between sizes at the same dose and time in the two models. Furthermore, the magnitude of the size effect was more prominent on Se accumulation than on GST activity. GST is strictly regulated by transcriptional and translational mechanisms, so its increase in activity normally does not exceed 3-fold. In contrast, the homeostasis of Se accumulation is not as tightly controlled. In the present experiments, GST activity had reached or was approaching saturation, but liver Se was far below saturation. Therefore, our results strongly suggest that the saturation profile of the tested biomarker has an impact on the size effect of Nano-Se. Since both GST and small molecular weight selenocompounds accumulated in vivo are important intermediates for chemoprevention by Se, our results also suggest that Nano-Se should be most effective as a chemopreventive agent at smaller particle size.


Asunto(s)
Glutatión Transferasa/metabolismo , Nanopartículas del Metal , Selenio/química , Animales , Biomarcadores , Ratones , Microscopía Electrónica de Transmisión , Selenio/deficiencia , Selenio/metabolismo
11.
Biofactors ; 27(1-4): 157-65, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17012772

RESUMEN

The "Long Terminal Repeat" (LTR) of HIV-1 is the target of cellular transcription factors such as NF-kappaB, and serves as the promoter-enhancer for the viral genome when integrated in host DNA. Various LTR-reporter gene constructs have been used for in vitro studies of activators or inhibitors of HIV-1 transcription, e.g., to show that antioxidants such as lipoic acid and selenium inhibit NF-kappaB-dependent HIV-1 LTR activation. One such construct is the pHIVlacZ plasmid, with the HIV-1 LTR driving expression of the lacZ gene (encoding beta-galactosidase, beta-gal). Typically, for inhibitor screening, cells transfected with pHIVlacZ are activated using tumor necrosis factor-alpha (TNF-alpha), and the colorimetric o-nitrophenol assay is used to assess changes in beta-gal activity. A variant of this assay was developed as described here, in which LTR activation was induced by pro-fs, a novel HIV-1 gene product encoded via a -1 frameshift from the protease gene. Cotransfection of cells with pHIVlacZ along with a pro-fs construct produced a significant increase in beta-gal activity over controls. L-ergothioneine dose dependently inhibited both TNF-alpha-mediated and pro-fs-mediated increases in beta-gal activity, with an IC50 of about 6 mM. Thus antioxidant strategy involving ergothioneine derived from food plants might be of benefit in chronic immunodeficiency diseases.


Asunto(s)
Antioxidantes/farmacología , Ergotioneína/farmacología , VIH/efectos de los fármacos , Animales , Línea Celular , Suplementos Dietéticos , Relación Dosis-Respuesta a Droga , Regulación Viral de la Expresión Génica/efectos de los fármacos , Genes Reporteros/genética , Genes Virales/genética , Vectores Genéticos/genética , VIH/genética , VIH/metabolismo , Duplicado del Terminal Largo de VIH/genética , Humanos , FN-kappa B/metabolismo , Transcripción Genética/genética , Activación Transcripcional/efectos de los fármacos , Transfección , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA