Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Genome Med ; 13(1): 103, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34154646

RESUMEN

BACKGROUND: Medulloblastoma (MB) is the most common malignant paediatric brain tumour and a leading cause of cancer-related mortality and morbidity. Existing treatment protocols are aggressive in nature resulting in significant neurological, intellectual and physical disabilities for the children undergoing treatment. Thus, there is an urgent need for improved, targeted therapies that minimize these harmful side effects. METHODS: We identified candidate drugs for MB using a network-based systems-pharmacogenomics approach: based on results from a functional genomics screen, we identified a network of interactions implicated in human MB growth regulation. We then integrated drugs and their known mechanisms of action, along with gene expression data from a large collection of medulloblastoma patients to identify drugs with potential to treat MB. RESULTS: Our analyses identified drugs targeting CDK4, CDK6 and AURKA as strong candidates for MB; all of these genes are well validated as drug targets in other tumour types. We also identified non-WNT MB as a novel indication for drugs targeting TUBB, CAD, SNRPA, SLC1A5, PTPRS, P4HB and CHEK2. Based upon these analyses, we subsequently demonstrated that one of these drugs, the new microtubule stabilizing agent, ixabepilone, blocked tumour growth in vivo in mice bearing patient-derived xenograft tumours of the Sonic Hedgehog and Group 3 subtype, providing the first demonstration of its efficacy in MB. CONCLUSIONS: Our findings confirm that this data-driven systems pharmacogenomics strategy is a powerful approach for the discovery and validation of novel therapeutic candidates relevant to MB treatment, and along with data validating ixabepilone in PDX models of the two most aggressive subtypes of medulloblastoma, we present the network analysis framework as a resource for the field.


Asunto(s)
Antineoplásicos/farmacología , Biomarcadores de Tumor , Neoplasias Cerebelosas/etiología , Desarrollo de Medicamentos , Meduloblastoma/etiología , Farmacogenética/métodos , Animales , Antineoplásicos/uso terapéutico , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/metabolismo , Biología Computacional/métodos , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes , Humanos , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/metabolismo , Ratones , Ratones Transgénicos , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Biología de Sistemas/métodos , Transcriptoma , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Neurorehabil Neural Repair ; 30(2): 159-72, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26704255

RESUMEN

BACKGROUND: Cortical stimulation (CS) combined with rehabilitative training (RT) has proven effective for enhancing poststroke functional recovery in rats, but human clinical trials have had mixed outcomes. OBJECTIVE: To assess the efficacy of CS/RT versus RT in a nonhuman primate model of cortical ischemic stroke. METHODS: Squirrel monkeys learned a pellet retrieval task, then received an infarct to the distal forelimb (DFL) representation of primary motor cortex. A subdural monopolar electrode was implanted over the spared DFL representation in dorsal premotor cortex (PMD). Seven weeks postinfarct, monkeys underwent 4 to 6 weeks of RT (n = 8) or CS/RT (n = 7; 100 Hz, cathodal current) therapy. Behavioral performance was assessed before and after infarct, prior to therapy, and 1 and 12 weeks posttherapy (follow-up). The primary outcome measure was motor performance at 1 week posttherapy. Secondary outcomes included follow-up performance at 12 weeks and treatment-related changes in neurophysiological maps of spared DFL representations. RESULTS: While postinfarct performance deficits were found in all monkeys, both groups demonstrated similar recovery profiles, with no difference in motor recovery between the RT and CS/RT groups. Posttherapy, PMD DFL area was significantly expanded in the RT group but not the CS/RT group. A significant relationship was found between motor recovery and DFL expansion in premotor cortex. CONCLUSIONS: Results suggest that the specific parameters utilized here were not optimal for promoting behavioral recovery in nonhuman primates. Though CS/RT has consistently shown efficacy in rat stroke models, the present finding has cautionary implications for translation of CS/RT therapy to clinical populations.


Asunto(s)
Isquemia Encefálica/terapia , Terapia por Estimulación Eléctrica/métodos , Corteza Motora/fisiopatología , Recuperación de la Función/fisiología , Accidente Cerebrovascular/terapia , Animales , Conducta Animal , Isquemia Encefálica/rehabilitación , Modelos Animales de Enfermedad , Terapia por Estimulación Eléctrica/normas , Femenino , Masculino , Plasticidad Neuronal/fisiología , Saimiri , Rehabilitación de Accidente Cerebrovascular
3.
Toxicol Sci ; 145(2): 244-51, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25724921

RESUMEN

Concerns exist as to whether individuals may be at greater risk for neurotoxicity following increased manganese (Mn) oral intake. The goals of this study were to determine the equivalence of 3 methods of oral exposure and the rate (mg Mn/kg/day) of exposure. Adult male rats were allocated to control diet (10 ppm), high manganese diet (200 ppm), manganese-supplemented drinking water, and manganese gavage treatment groups. Animals in the drinking water and gavage groups were given the 10 ppm manganese diet and supplemented with manganese chloride (MnCl(2)) in drinking water or once-daily gavage to provide a daily manganese intake equivalent to that seen in the high-manganese diet group. No statistically significant difference in body weight gain or terminal body weights was seen. Rats were anesthetized following 7 and 61 exposure days, and samples of bile and blood were collected. Rats were then euthanized and striatum, olfactory bulb, frontal cortex, cerebellum, liver, spleen, and femur samples were collected for chemical analysis. Hematocrit was unaffected by manganese exposure. Liver and bile manganese concentrations were elevated in all treatment groups on day 61 (relative to controls). Increased cerebellum manganese concentrations were seen in animals from the high-manganese diet group (day 61, relative to controls). Increased (relative to all treatment groups) femur, striatum, cerebellum, frontal cortex, and olfactory bulb manganese concentrations were also seen following gavage suggesting that dose rate is an important factor in the pharmacokinetics of oral manganese. These data will be used to refine physiologically based pharmacokinetic models, extending their utility for manganese risk assessment by including multiple dietary exposures.


Asunto(s)
Cloruros/farmacocinética , Dieta , Contaminación de Alimentos , Compuestos de Manganeso/farmacocinética , Contaminantes Químicos del Agua/farmacocinética , Administración Oral , Animales , Carga Corporal (Radioterapia) , Cloruros/administración & dosificación , Cloruros/toxicidad , Masculino , Compuestos de Manganeso/administración & dosificación , Intoxicación por Manganeso/etiología , Ratas Endogámicas F344 , Medición de Riesgo , Distribución Tisular , Contaminantes Químicos del Agua/administración & dosificación , Contaminantes Químicos del Agua/toxicidad
4.
Nat Rev Drug Discov ; 14(3): 149-50, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25722227

RESUMEN

The Structural Genomics Consortium (SGC) and its clinical, industry and disease-foundation partners are launching open-source preclinical translational medicine studies.


Asunto(s)
Línea Celular , Evaluación Preclínica de Medicamentos/métodos , Cultivo Primario de Células , Humanos , Pacientes , Asociación entre el Sector Público-Privado , Investigación Biomédica Traslacional
5.
Acta Neuropathol ; 128(6): 853-62, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25315281

RESUMEN

Although telomeres are maintained in most cancers by telomerase activation, a subset of tumors utilize alternative lengthening of telomeres (ALT) to sustain self-renewal capacity. In order to study the prevalence and significance of ALT in childhood brain tumors we screened 517 pediatric brain tumors using the novel C-circle assay. We examined the association of ALT with alterations in genes found to segregate with specific histological phenotypes and with clinical outcome. ALT was detected almost exclusively in malignant tumors (p = 0.001). ALT was highly enriched in primitive neuroectodermal tumors (12 %), choroid plexus carcinomas (23 %) and high-grade gliomas (22 %). Furthermore, in contrast to adult gliomas, pediatric low grade gliomas which progressed to high-grade tumors did not exhibit the ALT phenotype. Somatic but not germline TP53 mutations were highly associated with ALT (p = 1.01 × 10(-8)). Of the other alterations examined, only ATRX point mutations and reduced expression were associated with the ALT phenotype (p = 0.0005). Interestingly, ALT attenuated the poor outcome conferred by TP53 mutations in specific pediatric brain tumors. Due to very poor prognosis, one year overall survival was quantified in malignant gliomas, while in children with choroid plexus carcinoma, five year overall survival was investigated. For children with TP53 mutant malignant gliomas, one year overall survival was 63 ± 12 and 23 ± 10 % for ALT positive and negative tumors, respectively (p = 0.03), while for children with TP53 mutant choroid plexus carcinomas, 5 years overall survival was 67 ± 19 and 27 ± 13 % for ALT positive and negative tumors, respectively (p = 0.07). These observations suggest that the presence of ALT is limited to a specific group of childhood brain cancers which harbor somatic TP53 mutations and may influence the outcome of these patients. Analysis of ALT may contribute to risk stratification and targeted therapies to improve outcome for these children.


Asunto(s)
Neoplasias Encefálicas/genética , Carcinoma/genética , Neoplasias del Plexo Coroideo/genética , Glioma/genética , Tumores Neuroectodérmicos Primitivos/genética , Telómero , Proteína p53 Supresora de Tumor/genética , Adolescente , Neoplasias Encefálicas/fisiopatología , Carcinoma/fisiopatología , Neoplasias del Plexo Coroideo/fisiopatología , Estudios de Cohortes , ADN Helicasas/genética , Glioma/fisiopatología , Humanos , Estimación de Kaplan-Meier , Mutación , Clasificación del Tumor , Tumores Neuroectodérmicos Primitivos/fisiopatología , Proteínas Nucleares/genética , Fenotipo , Pronóstico , Telómero/metabolismo , Proteína Nuclear Ligada al Cromosoma X
6.
Toxicol Sci ; 120(2): 481-98, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21205636

RESUMEN

Manganese (Mn) is an essential nutrient with the capacity for toxicity from excessive exposure. Accumulation of Mn in the striatum, globus pallidus, and other midbrain regions is associated with neurotoxicity following high-dose Mn inhalation. Physiologically based pharmacokinetic (PBPK) models for ingested and inhaled Mn in rats and nonhuman primates were previously developed. The models contained saturable Mn tissue-binding capacities, preferential fluxes of Mn in specific tissues, and homeostatic control processes such as inducible biliary excretion of Mn. In this study, a nonhuman primate model was scaled to humans and was further extended to include iv, ip, and sc exposure routes so that past studies regarding radiolabeled carrier-free (54)MnCl(2) tracer kinetics could be evaluated. Simulation results accurately recapitulated the biphasic elimination behavior for all exposure routes. The PBPK models also provided consistent cross-species descriptions of Mn tracer kinetics across multiple exposure routes. These results indicate that PBPK models can accurately simulate the overall kinetic behavior of Mn and predict conditions where exposures will increase free Mn in various tissues throughout the body. Simulations with the human model indicate that globus pallidus Mn concentrations are unaffected by air concentrations < 10 µg/m(3) Mn. The use of this human Mn PBPK model can become a key component of future human health risk assessment of Mn, allowing the consideration of various exposure routes, natural tissue background levels, and homeostatic controls to explore exposure conditions that lead to increased target tissue levels resulting from Mn overexposure.


Asunto(s)
Compuestos de Manganeso/farmacocinética , Modelos Biológicos , Fisiología , Administración Oral , Adulto , Animales , Humanos , Exposición por Inhalación , Inyecciones , Macaca mulatta , Tasa de Depuración Metabólica , Especificidad de Órganos , Radioisótopos , Especificidad de la Especie , Factores de Tiempo , Distribución Tisular
7.
Circ Arrhythm Electrophysiol ; 3(6): 646-56, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20852297

RESUMEN

BACKGROUND: Dilated cardiomyopathy (DCM) is a primary disease of the heart muscle associated with sudden cardiac death secondary to ventricular tachyarrhythmias and asystole. However, the molecular pathways linking DCM to arrhythmias and sudden cardiac death are unknown. We previously identified a S196L mutation in exon 4 of LBD3-encoded ZASP in a family with DCM and sudden cardiac death. These findings led us to hypothesize that this mutation may precipitate both cytoskeletal and conduction abnormalities in vivo. Therefore, we investigated the role of the ZASP4 mutation S196L in cardiac cytoarchitecture and ion channel biology. METHODS AND RESULTS: We generated and analyzed transgenic mice with cardiac-restricted expression of the S196L mutation. We also performed cellular electrophysiological analysis on isolated S196L cardiomyocytes and protein-protein interaction studies. Ten month-old S196L mice developed hemodynamic dysfunction consistent with DCM, whereas 3-month-old S196L mice presented with cardiac conduction defects and atrioventricular block. Electrophysiological analysis on isolated S196L cardiomyocytes demonstrated that the L-type Ca(2+) currents and Na(+) currents were altered. The pull-down assay demonstrated that ZASP4 complexes with both calcium (Ca(v)1.2) and sodium (Na(v)1.5) channels. CONCLUSIONS: Our findings provide new insight into the mechanisms by which mutations of a structural/cytoskeletal protein, such as ZASP, lead to cardiac functional and electric abnormalities. This work represents a novel framework to understand the development of conduction defects and arrhythmias in subjects with cardiomyopathies, including DCM.


Asunto(s)
Cardiomiopatía Dilatada/genética , Proteínas Portadoras/genética , Citoesqueleto/ultraestructura , ADN/genética , Sistema de Conducción Cardíaco/fisiopatología , Proteínas de Homeodominio/genética , Mutación Missense , Miocitos Cardíacos/ultraestructura , Proteínas Adaptadoras Transductoras de Señales , Animales , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/fisiopatología , Proteínas Portadoras/biosíntesis , Modelos Animales de Enfermedad , Técnicas Electrofisiológicas Cardíacas , Exones , Femenino , Regulación de la Expresión Génica , Sistema de Conducción Cardíaco/ultraestructura , Proteínas de Homeodominio/biosíntesis , Inmunohistoquímica , Proteínas con Dominio LIM , Imagen por Resonancia Cinemagnética , Masculino , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Proteínas Musculares , Miocitos Cardíacos/metabolismo , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA