Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Foods ; 12(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37685139

RESUMEN

The microbial quality of raw milk artisanal cheeses is not always guaranteed due to the possible presence of pathogens in raw milk that can survive during manufacture and maturation. In this work, an overview of the existing information concerning lactic acid bacteria and plant extracts as antimicrobial agents is provided, as well as thermisation as a strategy to avoid pasteurisation and its negative impact on the sensory characteristics of artisanal cheeses. The mechanisms of antimicrobial action, advantages, limitations and, when applicable, relevant commercial applications are discussed. Plant extracts and lactic acid bacteria appear to be effective approaches to reduce microbial contamination in artisanal raw milk cheeses as a result of their constituents (for example, phenolic compounds in plant extracts), production of antimicrobial substances (such as organic acids and bacteriocins, in the case of lactic acid bacteria), or other mechanisms and their combinations. Thermisation was also confirmed as an effective heat inactivation strategy, causing the impairment of cellular structures and functions. This review also provides insight into the potential constraints of each of the approaches, hence pointing towards the direction of future research.

2.
Foods ; 12(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37509778

RESUMEN

This study characterises the effect of a customised starter culture (CSC) and plant extracts (lemon balm, sage, and spearmint) on Staphylococcus aureus (SA) and lactic acid bacteria (LAB) kinetics in goat's raw milk soft cheeses. Raw milk cheeses were produced with and without the CSC and plant extracts, and analysed for pH, SA, and LAB counts throughout ripening. The pH change over maturation was described by an empirical decay function. To assess the effect of each bio-preservative on SA, dynamic Bigelow-type models were adjusted, while their effect on LAB was evaluated by classical Huang models and dynamic Huang-Cardinal models. The models showed that the bio-preservatives decreased the time necessary for a one-log reduction but generally affected the cheese pH drop and SA decay rates (logDref = 0.621-1.190 days; controls: 0.796-0.996 days). Spearmint and sage extracts affected the LAB specific growth rate (0.503 and 1.749 ln CFU/g day-1; corresponding controls: 1.421 and 0.806 ln CFU/g day-1), while lemon balm showed no impact (p > 0.05). The Huang-Cardinal models uncovered different optimum specific growth rates of indigenous LAB (1.560-1.705 ln CFU/g day-1) and LAB of cheeses with CSC (0.979-1.198 ln CFU/g day-1). The models produced validate the potential of the tested bio-preservatives to reduce SA, while identifying the impact of such strategies on the fermentation process.

3.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37511513

RESUMEN

Grape stems have emerged as a promising natural ingredient in the cosmetics industry due to their abundance of phenolic compounds, known for their antioxidant and anti-inflammatory properties. These compounds have shown great potential in promoting skin health, fighting signs of aging, and shielding against environmental stressors. With high concentrations of resveratrol, flavonoids, and tannins, grape stems have garnered attention from cosmetic scientists. Research has indicated that phenolic compounds extracted from grape stems possess potent antioxidant abilities, effectively combating free radicals that accelerate aging. Moreover, these compounds have demonstrated the capacity to shield the skin from UV damage, boost collagen production, and enhance skin elasticity. Cosmetic formulations incorporating grape stem extracts have displayed promising results in addressing various skin concerns, including reducing wrinkles, fine lines, and age spots, leading to a more youthful appearance. Additionally, grape stem extracts have exhibited anti-inflammatory properties, soothing irritated skin and diminishing redness. Exploring the potential of grape stem phenolic compounds for cosmetics paves the way for sustainable and natural beauty products. By harnessing the beauty benefits of grape stems, the cosmetics industry can provide effective and eco-friendly solutions for consumers seeking natural alternatives. Ongoing research holds the promise of innovative grape stem-based formulations that could revolutionize the cosmetics market, fully unlocking the potential of these extraordinary botanical treasures.


Asunto(s)
Cosméticos , Vitis , Antioxidantes/farmacología , Fenoles/farmacología , Extractos Vegetales/farmacología
4.
Foods ; 12(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36900464

RESUMEN

Plants are rich in bioactive phytochemicals that often display medicinal properties. These can play an important role in the production of health-promoting food additives and the replacement of artificial ones. In this sense, this study aimed to characterise the polyphenolic profile and bioactive properties of the decoctions, infusions and hydroethanolic extracts of three plants: lemon balm (Melissa officinalis L.), sage (Salvia officinalis L.) and spearmint (Mentha spicata L.). Total phenolic content ranged from 38.79 mg/g extract to 84.51 mg/g extract, depending on the extract. The main phenolic compound detected in all cases was rosmarinic acid. The results highlighted that some of these extracts may have the ability to prevent food spoilage (due to antibacterial and antifungal effects) and promote health benefits (due to anti-inflammatory and antioxidant capacities) while not displaying toxicity against healthy cells. Furthermore, although no anti-inflammatory capacity was observed from sage extracts, these stood out for often displaying the best outcomes in terms of other bioactivities. Overall, the results of our research provide insight into the potential of plant extracts as a source of active phytochemicals and as natural food additives. They also support the current trends in the food industry of replacing synthetic additives and developing foods with added beneficial health effects beyond basic nutrition.

5.
Molecules ; 28(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36770664

RESUMEN

In recent years, there has been an increased motivation to reduce meat consumption globally due to environmental and health concerns, which has driven the development of meat substitutes. Filamentous fungal biomass, commonly known as mycoprotein, is a potential meat substitute since it is nutritious and has filaments to mimic meat fibrils. The current study aimed to investigate the potential use of a cheap substrate derived from the food industry, i.e., residual water in a tempeh factory, for mycoprotein production. The type of residual water, nutrient supplementation, optimum conditions for biomass production, and characteristics of the mycoprotein were determined. The results showed that the residual water from the first boiling with yeast extract addition gave the highest mycoprotein content. The optimum growth condition was a pH of 4.5 and agitation of 125 rpm, and it resulted in 7.76 g/L biomass. The mycoprotein contains 19.44% (w/w) protein with a high crude fiber content of 8.51% (w/w) and a low fat content of 1.56% (w/w). In addition, the amino acid and fatty acid contents are dominated by glutamic acid and polyunsaturated fatty acids, which are associated with an umami taste and are considered healthier foods. The current work reveals that the residual boiling water from the tempeh factory can be used to produce high-quality mycoprotein.


Asunto(s)
Alimentos de Soja , Hongos/química , Proteínas Fúngicas , Aminoácidos , Carne
6.
Food Chem ; 405(Pt B): 134958, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36413840

RESUMEN

Bee pollen is an imperative product for human use. Seven bee pollens were harvested from Morocco, and their chemical, biological and techno-functional properties were studied. All samples showed acceptable physicochemical and nutritional quality with a mean energy value of 239 kcal/100 g. FTIR spectra confirmed the presence of major constituents like carbohydrates, lipids, proteins and polyphenols. Moreover, pollens exhibited good techno-functional properties, like carbohydrate solubility (34.47-59.27 g/100 g), protein solubility (7.28-23.31 g/100 g), emulsifying stability (16.52-45.38 min), emulsifying activity (9.83-25.05 g/m3) water absorption capacity (1.06-2.19 g/g), oil absorption capacity (1.15-3.50 g/g) and water-oil absorption index (0.62-1.25). Bee pollen extracts revealed potent antioxidant capacity and digestive enzyme inhibitory activity associated with the presence of fifteen phenolic compounds belonging to flavons, flavonols, flavanones, flavan-3-ols, hydroxybenzoic and hydroxycinnamic acids, and stilbenes families. Present data indicate the possible application of bee pollen as a useful nutritional, bioactive and anti-foaming ingredient, replacing synthetic products in food industries.


Asunto(s)
Ingredientes Alimentarios , Humanos , Abejas , Animales , Polifenoles , Solubilidad , Antioxidantes , Polen
7.
Molecules ; 27(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36144513

RESUMEN

Bee products are known for their beneficial properties widely used in complementary medicine. This study aims to unveil the physicochemical, nutritional value, and phenolic profile of bee pollen and honey collected from Boulemane-Morocco, and to evaluate their antioxidant and antihyperglycemic activity. The results indicate that Citrus aurantium pollen grains were the majority pollen in both samples. Bee pollen was richer in proteins than honey while the inverse was observed for carbohydrate content. Potassium and calcium were the predominant minerals in the studied samples. Seven similar phenolic compounds were found in honey and bee pollen. Three phenolic compounds were identified only in honey (catechin, caffeic acid, vanillic acid) and six phenolic compounds were identified only in bee pollen (hesperidin, cinnamic acid, apigenin, rutin, chlorogenic acid, kaempferol). Naringin is the predominant phenolic in honey while hesperidin is predominant in bee pollen. The results of bioactivities revealed that bee pollen exhibited stronger antioxidant activity and effective α-amylase and α-glycosidase inhibitory action. These bee products show interesting nutritional and bioactive capabilities due to their chemical constituents. These features may allow these bee products to be used in food formulation, as functional and bioactive ingredients, as well as the potential for the nutraceutical sector.


Asunto(s)
Catequina , Hesperidina , Miel , Animales , Antioxidantes/química , Apigenina/análisis , Abejas , Calcio/análisis , Catequina/análisis , Ácido Clorogénico/análisis , Glicósido Hidrolasas/análisis , Hesperidina/análisis , Miel/análisis , Hipoglucemiantes/análisis , Quempferoles/análisis , Minerales/análisis , Marruecos , Fenoles/química , Polen/química , Potasio/análisis , Rutina/análisis , Rutina/farmacología , Ácido Vanílico , alfa-Amilasas
8.
Molecules ; 27(8)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35458671

RESUMEN

Aloe vera has been medicinally used for centuries. Its bioactive compounds have been shown to be very effective in the treatment of numerous diseases. In this work, a novel functional beverage was developed and characterized to combine the health benefits of probiotic bacteria with the Aloe vera plant itself. Two Aloe vera juices were obtained by fermentation either by a novel isolated Enterococcus faecium or a commercial Lactococcus lactis. The extraction of Aloe vera biocompounds for further fermentation was optimized. Extraction with water plus cellulase enhanced the carbohydrates and phenolic compounds in the obtained extracts. The biotransformation of the bioactive compounds from the extracts during fermentation was assessed. Both probiotic bacteria were able to grow on the Aloe vera extract. Lactic acid and short-chain fatty acids (SCFA) together with fourteen individual phenolic compounds were quantified in the produced Aloe vera juice, mainly epicatechin, aloin, ellagic acid, and hesperidin. The amount of total phenolic compounds was maintained through fermentation. The antioxidant activity was significantly increased in the produced juice by the ABTS method. The novel produced Aloe vera juice showed great potential as a functional beverage containing probiotics, prebiotics, SCFA, and phenolic compounds in its final composition.


Asunto(s)
Aloe , Enterococcus faecium , Probióticos , Aloe/metabolismo , Bebidas , Enterococcus faecium/metabolismo , Ácidos Grasos Volátiles/metabolismo , Fermentación , Lactobacillus , Fenoles/metabolismo , Extractos Vegetales/metabolismo
9.
Biomolecules ; 11(8)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34439888

RESUMEN

The main goal of this study was to chemically characterize an aqueous S. nigra flower extract and validate it as a bioactive agent. The elderflower aqueous extraction was performed at different temperatures (50, 70 and 90 °C). The extract obtained at 90 °C exhibited the highest phenolic content and antiradical activity. Therefore, this extract was analyzed by GC-MS and HPLC-MS, which allowed the identification of 46 compounds, being quercetin and chlorogenic acid derivatives representative of 86% of the total of phenolic compounds identified in hydrophilic fraction of the aqueous extract. Naringenin (27.2%) was the major compound present in the lipophilic fraction. The antiproliferative effects of the S. nigra extract were evaluated using the colon cancer cell lines RKO, HCT-116, Caco-2 and the extract's antigenotoxic potential was evaluated by the Comet assay in RKO cells. The RKO cells were the most susceptible to S. nigra flower extract (IC50 = 1250 µg mL-1). Moreover, the extract showed antimicrobial activity against Gram-positive bacteria, particularly Staphylococcus aureus and S. epidermidis. These results show that S. nigra-based extracts can be an important dietary source of bioactive phenolic compounds that contribute to health-span improving life quality, demonstrating their potential as nutraceutical, functional foods and/or cosmetic components for therapeutic purposes.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Flores/química , Bacterias Grampositivas/efectos de los fármacos , Fenoles , Extractos Vegetales/farmacología , Sambucus nigra/metabolismo , Antibacterianos/química , Antibacterianos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Línea Celular Tumoral , Humanos , Fenoles/química , Fenoles/farmacología
10.
Foods ; 10(3)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33809865

RESUMEN

Plant extracts have been proposed as alternative biocides and antioxidants to be included in a variety of food products. In this work, to assess the potential of rosemary, lemon balm, basil, tarragon, sage, and spearmint to be used as food additives, the chemical profiles and bioactivities of such plant extracts were studied. Furthermore, to evaluate the influence of extraction methods and solvents on the chemical characteristics and bioactivities of the plant extracts, two extraction methods (solid-liquid and Soxhlet extraction) and two solvents (water and ethanol 70% (v/v)) were tested for each plant. Groupwise summary statistics were calculated by plant, extraction method, and solvent, and linear models were built to assess the main effects of those terms and their interactions on the chemical characteristics and bioactivities of the extracts. The results revealed that all factors-type of plant, extraction method and solvent-have influence on the chemical profile and antioxidant activity of the resultant extracts. Interactions between factors were also observed. Hydroethanolic Soxhlet extracts presented the least potential as biopreservatives due to their low phenolic content and reduced antioxidant capacity. Oppositely, aqueous Soxhlet extracts and hydroethanolic solid-liquid extracts showed high contents in phenolic compounds and high antioxidant activities. In particular, the hydroethanolic solid-liquid extracts of lemon balm, spearmint, and sage presented the highest phenolic and flavonoid contents, accompanied by a high antioxidant activity, and they revealed antimicrobial activity against four pathogens (S. enterica ser. Typhimurium, E. coli, L. monocytogenes and S. aureus). These results demonstrate the potential of these natural resources to be incorporated as bioactive preservatives in foods or their packaging.

11.
Food Res Int ; 138(Pt B): 109802, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33288184

RESUMEN

The present study was designed to investigate the preventive effect of propolis, bee pollen and their combination on Type 2 diabetes induced by D-glucose in rats. The study was carried out by feeding daily two concentrations (100 and 200 mg/Kg BW) of propolis or bee pollen (or their combination to normal (non-diabetic) and diabetic rats for a period of 16 weeks. In vivo biochemical changes associated to diabetes are induced by drinking a solution containing 10% of D-glucose (diabetic rats). The in vitro antioxidant activity was also evaluated and the chemical composition of propolis and bee pollen extracts was determined by UHPLC-DAD. Phytochemical composition of propolis and bee pollen revealed the presence of several natural antioxidants, such as hydroxycinnamic acids, hydroxybenzoic acids, flavonoids, flavan-3-ols and stilbens. The major antioxidant compound present in propolis was Naringin (290.19 ± 0.2 mg/Kg) and in bee pollen was apigenin (162.85 ± 17.7 mg/Kg). These results have been related with a high antioxidant activity, more intense in propolis extract. In rats, the administration of D-glucose had induced hyperglycemia (13.2 ± 0.82 mmol/L), increased plasmatic insulin levels (25.10 ± 2.12 U/L) and HOMA-IR index (14.72 ± 0.85) accompanied with dyslipidemia, elevation of hepatic enzyme levels, and a change in both serum renal biomarkers and plasmatic calcium. The co-administration of propolis and bee pollen extracts alone or in combination restored these biochemical parameters and attenuated the deleterious effects of D-glucose on liver and kidney functions. Furthermore, these effects were better attenuated in the combined therapy-prevented diabetic rats. Hence, it is possible to conclude that propolis and bee pollen can be used as a preventive natural product against diabetes induced dyslipidemia and hepato-renal damage.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Própolis , Animales , Antioxidantes , Abejas , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucosa , Extractos Vegetales/farmacología , Polen , Ratas
12.
Prep Biochem Biotechnol ; 50(7): 655-663, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32068481

RESUMEN

The partitioning and purification of lectins from the crude extract of Cratylia mollis seeds (Cramoll 1,4) was investigated in aqueous two-phase systems (ATPS). A factorial design model (24) was used to evaluate the influence of polyethylene glycol (PEG) molar mass (1500-8000 g/mol), PEG concentration (12.5-17.5% w/w), phosphate (10-15% w/w) concentration, and pH (6-8) on the differential partitioning, purification factor, and yield of the lectin. Polymer and salt concentration were the most important variables affecting partition of lectin and used to find optimum purification factor by experimental Box-Behnken design together with the response surface methodology (RSM). ATPS showed best conditions composed by 13.9% PEG1500, 15.3% phosphate buffer at pH 6, which ensured purification factor of 4.70. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a single band of protein with 26.1 kDa. Furthermore, results demonstrated a thermostable lectin presenting activity until 60 °C and lost hemagglutinating activity at 80 °C. According to the obtained data it can be inferred that the ATPS optimization using RSM approach can be applied for recovery and purification of lectins.


Asunto(s)
Lectinas/química , Lectinas/aislamiento & purificación , Phaseolus/química , Extractos Vegetales/química , Electroforesis en Gel de Poliacrilamida , Hemaglutininas/química , Concentración de Iones de Hidrógeno , Fosfatos/química , Polietilenglicoles/química , Proteínas/química , Semillas/química , Espectrofotometría , Propiedades de Superficie , Temperatura
13.
Food Res Int ; 116: 249-257, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30716943

RESUMEN

Cooperage wood is a porous material and beverages exchange compounds with it by penetrating into its pores. This work demonstrates the enrichment of wood with wine during ageing. Three oak varieties were cut into different sized chips and immersed in fortified wine and water. Wine and water uptake were measured along time and sorption was described based on a saturation empirical model. Maximum uptake varied among wood types and was independent of particle size, which affected only equilibrium time. Sorption of wine volatiles such as alcohols, esters and acids in wood was shown, which was also dependent on wood type and independent of particle size. Multivariate analysis demonstrated differences and similarities in depletion of wood extractives and sorption of wine volatiles depending on wood variety. Sorption shown in this work demonstrates wood as a vector for aroma recombination, when reused for ageing between different beverages.


Asunto(s)
Quercus/química , Compuestos Orgánicos Volátiles/análisis , Vino/análisis , Madera/química , Adsorción , Alcoholes/análisis , Etanol , Modelos Teóricos , Análisis Multivariante , Odorantes/análisis , Fenoles/análisis , Extractos Vegetales/análisis , Agua/análisis
14.
Plant Foods Hum Nutr ; 73(1): 68-73, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29335878

RESUMEN

This study aimed to recover bioactive compounds by solid-liquid extraction from the agro-industrial residue obtained during juçara fruits processing into pulp. A preliminary study using different solvents (methanol, ethanol and water) indicated ethanol in aqueous solution as the best solvent for antioxidants recovery. Then, a Box-Behnken design was applied considering as independent variables the solvent composition (30-70% ethanol in water), temperature (30-70 °C) and time (30-60 min), in order to evaluate the effects of these factors on antioxidant activity in juçara extract. Results showed that the extracts with higher antioxidant activity were obtained using 30% ethanol at 70 °C for 60 min; measurements included ABTS and DPPH assays, determination of total phenolic content and total monomeric anthocyanins. Furthermore, the effect of pH in antioxidants recovery was evaluated. For this purpose, the 30% ethanol solution was acidified to pH 1 and 2 with HCl. Principal component analysis showed the formation of three distinct groups: one characterized by high bioactive compounds content (pH 1.0), another with superior antioxidant activity (pH 5.75, non-acidified), and finally the group at pH 2 presenting the worst concentrations in the evaluated responses. HPLC analysis showed the presence of cyanidin-3-O-rutinoside and cyanidin-3-O-glucoside in the extracts. Therefore, the conventional solid-liquid extraction using renewable solvent can be successfully applied to recover bioactive compounds from juçara residue, which can be used by different food industries.


Asunto(s)
Antioxidantes/aislamiento & purificación , Fraccionamiento Químico/métodos , Euterpe/química , Antocianinas/análisis , Antocianinas/aislamiento & purificación , Antioxidantes/química , Cromatografía Líquida de Alta Presión , Etanol/química , Concentración de Iones de Hidrógeno , Metanol/química , Extractos Vegetales/química , Solventes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA