Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Curr Environ Health Rep ; 10(3): 215-249, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37337116

RESUMEN

PURPOSE OF REVIEW: Biomarkers are commonly used in epidemiological studies to assess metals and metalloid exposure and estimate internal dose, as they integrate multiple sources and routes of exposure. Researchers are increasingly using multi-metal panels and innovative statistical methods to understand how exposure to real-world metal mixtures affects human health. Metals have both common and unique sources and routes of exposure, as well as biotransformation and elimination pathways. The development of multi-element analytical technology allows researchers to examine a broad spectrum of metals in their studies; however, their interpretation is complex as they can reflect different windows of exposure and several biomarkers have critical limitations. This review elaborates on more than 500 scientific publications to discuss major sources of exposure, biotransformation and elimination, and biomarkers of exposure and internal dose for 12 metals/metalloids, including 8 non-essential elements (arsenic, barium, cadmium, lead, mercury, nickel, tin, uranium) and 4 essential elements (manganese, molybdenum, selenium, and zinc) commonly used in multi-element analyses. RECENT FINDINGS: We conclude that not all metal biomarkers are adequate measures of exposure and that understanding the metabolic biotransformation and elimination of metals is key to metal biomarker interpretation. For example, whole blood is a good biomarker of exposure to arsenic, cadmium, lead, mercury, and tin, but it is not a good indicator for barium, nickel, and uranium. For some essential metals, the interpretation of whole blood biomarkers is unclear. Urine is the most commonly used biomarker of exposure across metals but it should not be used to assess lead exposure. Essential metals such as zinc and manganese are tightly regulated by homeostatic processes; thus, elevated levels in urine may reflect body loss and metabolic processes rather than excess exposure. Total urinary arsenic may reflect exposure to both organic and inorganic arsenic, thus, arsenic speciation and adjustment for arsebonetaine are needed in populations with dietary seafood consumption. Hair and nails primarily reflect exposure to organic mercury, except in populations exposed to high levels of inorganic mercury such as in occupational and environmental settings. When selecting biomarkers, it is also critical to consider the exposure window of interest. Most populations are chronically exposed to metals in the low-to-moderate range, yet many biomarkers reflect recent exposures. Toenails are emerging biomarkers in this regard. They are reliable biomarkers of long-term exposure for arsenic, mercury, manganese, and selenium. However, more research is needed to understand the role of nails as a biomarker of exposure to other metals. Similarly, teeth are increasingly used to assess lifelong exposures to several essential and non-essential metals such as lead, including during the prenatal window. As metals epidemiology moves towards embracing a multi-metal/mixtures approach and expanding metal panels to include less commonly studied metals, it is important for researchers to have a strong knowledge base about the metal biomarkers included in their research. This review aims to aid metals researchers in their analysis planning, facilitate sound analytical decision-making, as well as appropriate understanding and interpretation of results.


Asunto(s)
Arsénico , Mercurio , Selenio , Uranio , Embarazo , Femenino , Humanos , Cadmio , Manganeso , Níquel , Bario , Estaño , Zinc , Biomarcadores
2.
Environ Pollut ; 318: 120851, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36509352

RESUMEN

The nephrotoxicity of low-chronic metal exposures is unclear, especially considering several metals simultaneously. We assessed the individual and joint association of metals with longitudinal change in renal endpoints in Aragon Workers Health Study participants with available measures of essential (cobalt [Co], copper [Cu], molybdenum [Mo] and zinc [Zn]) and non-essential (As, barium [Ba], Cd, chromium [Cr], antimony [Sb], titanium [Ti], uranium [U], vanadium [V] and tungsten [W]) urine metals and albumin-to-creatinine ratio (ACR) (N = 707) and estimated glomerular filtration rate (eGFR) (N = 1493) change. Median levels were 0.24, 7.0, 18.6, 295, 3.1, 1.9, 0.28, 1.16, 9.7, 0.66, 0.22 µg/g for Co, Cu, Mo, Zn, As, Ba, Cd, Cr, Sb, Ti, V and W, respectively, and 52.5 and 27.2 ng/g for Sb and U, respectively. In single metal analysis, higher As, Cr and W concentrations were associated with increasing ACR annual change. Higher Zn, As and Cr concentrations were associated with decreasing eGFR annual change. The shape of the longitudinal dose-responses, however, was compatible with a nephrotoxic role for all metals, both in ACR and eGFR models. In joint metal analysis, both higher mixtures of Cu-Zn-As-Ba-Ti-U-V-W and Co-Cd-Cr-Sb-V-W showed associations with increasing ACR and decreasing eGFR annual change. As and Cr were main drivers of the ACR change joint metal association. For the eGFR change joint metal association, while Zn and Cr were main drivers, other metals also contributed substantially. We identified potential interactions for As, Zn and W by other metals with ACR change, but not with eGFR change. Our findings support that Zn, As, Cr and W and suggestively other metals, are nephrotoxic at relatively low exposure levels. Metal exposure reduction and mitigation interventions may improve prevention and decrease the burden of renal disease in the population.


Asunto(s)
Cadmio , Uranio , Persona de Mediana Edad , Adulto , Humanos , Albuminuria , España/epidemiología , Cromo , Zinc , Cobalto , Molibdeno , Titanio , Bario
3.
Free Radic Biol Med ; 194: 52-61, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370960

RESUMEN

BACKGROUND: The potential joint influence of metabolites on bone fragility has been rarely evaluated. We assessed the association of plasma metabolic patterns with bone fragility endpoints (primarily, incident osteoporosis-related bone fractures, and, secondarily, bone mineral density BMD) in the Hortega Study participants. Redox balance plays a key role in bone metabolism. We also assessed differential associations in participant subgroups by redox-related metal exposure levels and candidate genetic variants. MATERIAL AND METHODS: In 467 participants older than 50 years from the Hortega Study, a representative sample from a region in Spain, we estimated metabolic principal components (mPC) for 54 plasma metabolites from NMR-spectrometry. Metals biomarkers were measured in plasma by AAS and in urine by HPLC-ICPMS. Redox-related SNPs (N = 341) were measured by oligo-ligation assay. RESULTS: The prospective association with incident bone fractures was inverse for mPC1 (non-essential and essential amino acids, including branched-chain, and bacterial co-metabolites, including isobutyrate, trimethylamines and phenylpropionate, versus fatty acids and VLDL) and mPC4 (HDL), but positive for mPC2 (essential amino acids, including aromatic, and bacterial co-metabolites, including isopropanol and methanol). Findings from BMD models were consistent. Participants with decreased selenium and increased antimony, arsenic and, suggestively, cadmium exposures showed higher mPC2-associated bone fractures risk. Genetic variants annotated to 19 genes, with the strongest evidence for NCF4, NOX4 and XDH, showed differential metabolic-related bone fractures risk. CONCLUSIONS: Metabolic patterns reflecting amino acids, microbiota co-metabolism and lipid metabolism were associated with bone fragility endpoints. Carriers of redox-related variants may benefit from metabolic interventions to prevent the consequences of bone fragility depending on their antimony, arsenic, selenium, and, possibly, cadmium, exposure levels.


Asunto(s)
Arsénico , Fracturas Óseas , Selenio , Humanos , Cadmio , Antimonio , Densidad Ósea/genética , Oxidación-Reducción
4.
Rev Esp Cardiol ; 75(12): 1050-1058, 2022 Dec.
Artículo en Español | MEDLINE | ID: mdl-36570815

RESUMEN

The environment is a strong determinant of cardiovascular health. Environmental cardiology studies the contribution of environmental exposures with the aim of minimizing the harmful influences of pollution and promoting cardiovascular health through specific preventive or therapeutic strategies. The present review focuses on particulate matter and metals, which are the pollutants with the strongest level of scientific evidence, and includes possible interventions. Legislation, mitigation and control of pollutants in air, water and food, as well as environmental policies for heart-healthy spaces, are key measures for cardiovascular health. Individual strategies include the chelation of divalent metals such as lead and cadmium, metals that can only be removed from the body via chelation. The TACT (Trial to Assess Chelation Therapy, NCT00044213) clinical trial demonstrated cardiovascular benefit in patients with a previous myocardial infarction, especially in those with diabetes. Currently, the TACT2 trial (NCT02733185) is replicating the TACT results in people with diabetes. Data from the United States and Argentina have also shown the potential usefulness of chelation in severe peripheral arterial disease. More research and action in environmental cardiology could substantially help to improve the prevention and treatment of cardiovascular disease.

5.
Rev Esp Cardiol (Engl Ed) ; 75(12): 1050-1058, 2022 Dec.
Artículo en Inglés, Español | MEDLINE | ID: mdl-35931285

RESUMEN

The environment is a strong determinant of cardiovascular health. Environmental cardiology studies the contribution of environmental exposures with the aim of minimizing the harmful influences of pollution and promoting cardiovascular health through specific preventive or therapeutic strategies. The present review focuses on particulate matter and metals, which are the pollutants with the strongest level of scientific evidence, and includes possible interventions. Legislation, mitigation and control of pollutants in air, water and food, as well as environmental policies for heart-healthy spaces, are key measures for cardiovascular health. Individual strategies include the chelation of divalent metals such as lead and cadmium, metals that can only be removed from the body via chelation. The TACT (Trial to Assess Chelation Therapy, NCT00044213) clinical trial demonstrated cardiovascular benefit in patients with a previous myocardial infarction, especially in those with diabetes. Currently, the TACT2 trial (NCT02733185) is replicating the TACT results in people with diabetes. Data from the United States and Argentina have also shown the potential usefulness of chelation in severe peripheral arterial disease. More research and action in environmental cardiology could substantially help to improve the prevention and treatment of cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Contaminantes Ambientales , Infarto del Miocardio , Humanos , Estados Unidos , Terapia por Quelación/efectos adversos , Terapia por Quelación/métodos , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/prevención & control , Quelantes/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Metales , Infarto del Miocardio/complicaciones
6.
Redox Biol ; 52: 102314, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35460952

RESUMEN

BACKGROUND: Limited studies have evaluated the joint influence of redox-related metals and genetic variation on metabolic pathways. We analyzed the association of 11 metals with metabolic patterns, and the interacting role of candidate genetic variants, in 1145 participants from the Hortega Study, a population-based sample from Spain. METHODS: Urine antimony (Sb), arsenic, barium (Ba), cadmium (Cd), chromium (Cr), cobalt (Co), molybdenum (Mo) and vanadium (V), and plasma copper (Cu), selenium (Se) and zinc (Zn) were measured by ICP-MS and AAS, respectively. We summarized 54 plasma metabolites, measured with targeted NMR, by estimating metabolic principal components (mPC). Redox-related SNPs (N = 291) were measured by oligo-ligation assay. RESULTS: In our study, the association with metabolic principal component (mPC) 1 (reflecting non-essential and essential amino acids, including branched chain, and bacterial co-metabolism versus fatty acids and VLDL subclasses) was positive for Se and Zn, but inverse for Cu, arsenobetaine-corrected arsenic (As) and Sb. The association with mPC2 (reflecting essential amino acids, including aromatic, and bacterial co-metabolism) was inverse for Se, Zn and Cd. The association with mPC3 (reflecting LDL subclasses) was positive for Cu, Se and Zn, but inverse for Co. The association for mPC4 (reflecting HDL subclasses) was positive for Sb, but inverse for plasma Zn. These associations were mainly driven by Cu and Sb for mPC1; Se, Zn and Cd for mPC2; Co, Se and Zn for mPC3; and Zn for mPC4. The most SNP-metal interacting genes were NOX1, GSR, GCLC, AGT and REN. Co and Zn showed the highest number of interactions with genetic variants associated to enriched endocrine, cardiovascular and neurological pathways. CONCLUSIONS: Exposures to Co, Cu, Se, Zn, As, Cd and Sb were associated with several metabolic patterns involved in chronic disease. Carriers of redox-related variants may have differential susceptibility to metabolic alterations associated to excessive exposure to metals.


Asunto(s)
Arsénico , Metales Pesados , Selenio , Aminoácidos Esenciales , Arsénico/orina , Cadmio , Interacción Gen-Ambiente , Humanos , Metales , Metales Pesados/orina , Oxidación-Reducción , España
7.
Antioxid Redox Signal ; 37(13-15): 990-997, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35350849

RESUMEN

Increasing evidence suggests that high selenium (Se) exposure is associated with adverse health effects. However, limited evidence exists on the association of Se exposure with cardiovascular disease (CVD), especially in communities affected by high naturally occurring Se in environmental media. We evaluated the prospective association between urinary Se levels and CVD incidence and mortality for 2727 American Indian adults who participated in the Strong Heart Study, with urinary Se levels measured at baseline (1989-1991) and CVD outcomes ascertained through 2017. The median (interquartile range) of urinary Se was 49.0 (36.7-67.4) µg/g creatinine. The multivariable adjusted hazard ratios (95% confidence interval) of incident CVD, coronary heart disease, and stroke comparing the 75th versus 25th percentile of urinary Se distributions were 1.11 (1.01-1.22), 1.05 (0.94-1.17), and 1.08 (0.88-1.33), respectively. In flexible dose-response models, increased risk for CVD incidence was only observed when the urinary Se level exceeded 60 µg/g creatinine. For CVD mortality, a nonstatistically significant U-shaped relationship was found across urinary Se levels. There was no evidence of effect modification by other urinary metal/metalloid levels. Our observation leads to the hypothesis that elevated Se exposure is a risk factor for CVD, especially in Se-replete populations. Antioxid. Redox Signal. 37, 990-997.


Asunto(s)
Enfermedades Cardiovasculares , Selenio , Adulto , Humanos , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Creatinina , Estudios Prospectivos , Factores de Riesgo , Incidencia
8.
Free Radic Biol Med ; 162: 392-400, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33137469

RESUMEN

BACKGROUND AND OBJECTIVES: Experimental data suggest that trace elements, such as arsenic (As), cadmium (Cd), and selenium (Se) can influence the bone remodeling process. We evaluated the cross-sectional association between As, Cd, and Se biomarkers with bone mineral density (BMD) measured at the calcaneus, in a representative sample of a general population from Spain. As secondary analyses we evaluated the associations of interest in subgroups defined by well-established BMD determinants, and also conducted prospective analysis of osteoporosis-related incident bone fractures restricted to participants older than 50 years-old. METHODS: In N = 1365 Hortega Study participants >20 years-old, urine As and Cd were measured by inductively coupled-plasma mass spectrometry (ICPMS); plasma Se was measured by atomic absorption spectrometry (AAS) with graphite furnace; and BMD at the calcaneus was measured using the Peripheral Instaneuous X-ray Imaging system (PIXI). As levels were corrected for arsenobetaine (Asb) to account for inorganic As exposure. RESULTS: The median of total urine As, Asb-corrected urine As, urine Cd, and plasma Se was 61.3, 6.53 and 0.39 µg/g creatinine, and 84.9 µg/L, respectively. In cross-sectional analysis, urine As and Cd were not associated with reduced BMD (T-score < -1 SD). We observed a non-linear dose-response of Se and reduced BMD, showing an inverse association below ~105 µg/L, which became increasingly positive above ~105 µg/L. The evaluated subgroups did not show differential associations. In prospective analysis, while we also observed a U-shape dose-response of Se with the incidence of osteoporosis-related bone fractures, the positive association above ~105 µg/L was markedly stronger, compared to the cross-sectional analysis. CONCLUSIONS: Our results support that Se, but not As and Cd, was associated to BMD-related disease. The association of Se and BMD-related disease was non-linear, including a strong positive association with osteoporosis-related bone fractures risk at the higher Se exposure range. Considering the substantial burden of bone loss in elderly populations, additional large prospective studies are needed to confirm the relevance of our findings to bone loss prevention in the population depending on Se exposure levels.


Asunto(s)
Arsénico , Selenio , Adulto , Anciano , Arsénico/toxicidad , Densidad Ósea , Cadmio/toxicidad , Estudios Transversales , Humanos , Persona de Mediana Edad , Estudios Prospectivos , Adulto Joven
9.
Redox Biol ; 12: 798-805, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28437656

RESUMEN

BACKGROUND: Selenium and single-nucleotide-polymorphisms in selenoprotein genes have been associated to diabetes. However, the interaction of selenium with genetic variation in diabetes and oxidative stress-related genes has not been evaluated as a potential determinant of diabetes risk. METHODS: We evaluated the cross-sectional and prospective associations of plasma selenium concentrations with type 2 diabetes, and the interaction of selenium concentrations with genetic variation in candidate polymorphisms, in a representative sample of 1452 men and women aged 18-85 years from Spain. RESULTS: The geometric mean of plasma selenium levels in the study sample was 84.2µg/L. 120 participants had diabetes at baseline. Among diabetes-free participants who were not lost during the follow-up (N=1234), 75 developed diabetes over time. The multivariable adjusted odds ratios (95% confidence interval) for diabetes prevalence comparing the second and third to the first tertiles of plasma selenium levels were 1.80 (1.03, 3.14) and 1.97 (1.14, 3.41), respectively. The corresponding hazard ratios (95% CI) for diabetes incidence were 1.76 (0.96, 3.22) and 1.80 (0.98, 3.31), respectively. In addition, we observed significant interactions between selenium and polymorphisms in PPARGC1A, and in genes encoding mitochondrial proteins, such as BCS1L and SDHA, and suggestive interactions of selenium with other genes related to selenoproteins and redox metabolism. CONCLUSIONS: Plasma selenium was positively associated with prevalent and incident diabetes. While the statistical interactions of selenium with polymorphisms involved in regulation of redox and insulin signaling pathways provide biological plausibility to the positive associations of selenium with diabetes, further research is needed to elucidate the causal pathways underlying these associations.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/epidemiología , Redes Reguladoras de Genes , Selenio/sangre , ATPasas Asociadas con Actividades Celulares Diversas/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios Transversales , Diabetes Mellitus Tipo 2/genética , Complejo II de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/genética , Femenino , Interacción Gen-Ambiente , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Oxidación-Reducción , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Polimorfismo de Nucleótido Simple , Prevalencia , Estudios Prospectivos , España/epidemiología , Adulto Joven
10.
Antioxid Redox Signal ; 22(15): 1352-62, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25606668

RESUMEN

The interaction of selenium, a component of antioxidant selenoproteins, with genetic variation in lipid-related pathways has not been evaluated earlier as a potential determinant of blood lipid levels. We aimed at evaluating the effects of gene-environment interactions between plasma levels of selenium and polymorphisms in lipid metabolic pathways on plasma lipid levels in a study population from Spain (N=1,315). We observed statistically significant associations between plasma selenium and lipid levels (differences in total, low-density lipoprotein [LDL]-cholesterol, and triglycerides comparing the 80th with the 20th percentiles of plasma selenium levels were, respectively, 12.0 (95% confidence interval 6.3, 17.8), 8.9 (3.7, 14.2), and 9.0 (2.9, 15.2) mg/dl). We also found statistically significant interactions at the Bonferroni-corrected significance level (p=0.0008) between selenium and rs2290201 in FABP4 for total and LDL cholesterol levels and rs1800774 in CETP for elevated LDL cholesterol. Other polymorphisms showed statistically significant differential associations of plasma selenium levels and lipids biomarkers at the nominal p-value of 0.05. Reported statistical interactions with genes involved in lipid transport and transfer provide biological support to the positive associations of selenium with lipids shown in cross-sectional studies and lead to the hypothesis that selenium and lipid levels share common biological pathways that need to be elucidated in mechanistic studies.


Asunto(s)
Proteínas de Transferencia de Ésteres de Colesterol/genética , Proteínas de Unión a Ácidos Grasos/genética , Lípidos/sangre , Polimorfismo de Nucleótido Simple , Selenio/sangre , LDL-Colesterol/sangre , Estudios Transversales , Femenino , Interacción Gen-Ambiente , Humanos , Masculino , Persona de Mediana Edad , Transducción de Señal , España , Triglicéridos/sangre
11.
Free Radic Biol Med ; 74: 229-36, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25017966

RESUMEN

The role of selenium exposure in preventing chronic disease is controversial, especially in selenium-repleted populations. At high concentrations, selenium exposure may increase oxidative stress. Studies evaluating the interaction of genetic variation in genes involved in oxidative stress pathways and selenium are scarce. We evaluated the cross-sectional association of plasma selenium concentrations with oxidative stress levels, measured as oxidized to reduced glutathione ratio (GSSG/GSH), malondialdehyde (MDA), and 8-oxo-7,8-dihydroguanine (8-oxo-dG) in urine, and the interacting role of genetic variation in oxidative stress candidate genes, in a representative sample of 1445 men and women aged 18-85 years from Spain. The geometric mean of plasma selenium levels in the study sample was 84.76 µg/L. In fully adjusted models the geometric mean ratios for oxidative stress biomarker levels comparing the highest to the lowest quintiles of plasma selenium levels were 0.61 (0.50-0.76) for GSSG/GSH, 0.89 (0.79-1.00) for MDA, and 1.06 (0.96-1.18) for 8-oxo-dG. We observed nonlinear dose-responses of selenium exposure and oxidative stress biomarkers, with plasma selenium concentrations above ~110 µg/L being positively associated with 8-oxo-dG, but inversely associated with GSSG/GSH and MDA. In addition, we identified potential risk genotypes associated with increased levels of oxidative stress markers with high selenium levels. Our findings support that high selenium levels increase oxidative stress in some biological processes. More studies are needed to disentangle the complexity of selenium biology and the relevance of potential gene-selenium interactions in relation to health outcomes in human populations.


Asunto(s)
Interacción Gen-Ambiente , Estrés Oxidativo , Selenio/sangre , 8-Hidroxi-2'-Desoxicoguanosina , Adolescente , Adulto , Anciano , Biomarcadores/sangre , Estudios Transversales , Desoxiguanosina/análogos & derivados , Desoxiguanosina/orina , Femenino , Genotipo , Glutatión/metabolismo , Disulfuro de Glutatión/orina , Humanos , Masculino , Malondialdehído/orina , Persona de Mediana Edad , España , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA