Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Thromb Haemost ; 20(11): 2556-2570, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35950914

RESUMEN

BACKGROUND: Thrombolysis is a frontline treatment for stroke, which involves the application of tissue plasminogen activator (tPA) to trigger endogenous clot-degradation pathways. However, it is only effective within 4.5 h of symptom onset because of clot contraction preventing tPA permeation into the clot. Magnetic hyperthermia (MH) mediated by tumor-targeted magnetic nanoparticles is used to treat cancer by using local heat generation to trigger apoptosis of cancer cells. OBJECTIVES: To develop clot-targeting magnetic nanoparticles to deliver MH to the surface of human blood clots, and to assess whether this can improve the efficacy of thrombolysis of contracted blood clots. METHODS: Clot-targeting magnetic nanoparticles were developed by functionalizing iron oxide nanoparticles with an antibody recognizing activated integrin αIIbß3 (PAC-1). The magnetic properties of the PAC-1-tagged magnetic nanoparticles were characterized and optimized to deliver clot-targeted MH. RESULTS: Clot-targeted MH increases the efficacy of tPA-mediated thrombolysis in contracted human blood clots, leading to a reduction in clot weight. MH increases the permeability of the clots to tPA, facilitating their breakdown. Scanning electron microscopy reveals that this effect is elicited through enhanced fibrin breakdown and triggering the disruption of red blood cells on the surface of the clot. Importantly, endothelial cells viability in a three-dimensional blood vessel model is unaffected by exposure to MH. CONCLUSIONS: This study demonstrates that clot-targeted MH can enhance the thrombolysis of contracted human blood clots and can be safely applied to enhance the timeframe in which thrombolysis is effective.


Asunto(s)
Hipertermia Inducida , Trombosis , Humanos , Activador de Tejido Plasminógeno , Células Endoteliales , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria , Trombosis/terapia , Fibrina , Terapia Trombolítica/métodos , Fenómenos Magnéticos
2.
Sci Rep ; 9(1): 1059, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30705309

RESUMEN

Cutaneous leishmaniasis is a neglected tropical disease characterized by disfiguring skin lesions. Current chemotherapeutic options depend on toxic, expensive drugs that are both difficult to administer and becoming less effective due to increasing levels of resistance. In comparison, thermotherapy displays greater patient compliance and less adverse systemic effects, but there are still significant issues associated with this. The procedure is painful, requiring local anaesthetic, and is less effective against large lesions. Using nanoparticles to controllably generate heat in a localized manner may provide an alternative solution. Here we evaluate magnetic hyperthermia, using iron oxide magnetic nanoparticles, as a localized, heat-based method to kill the human-infective parasite in vitro. We assessed the effectiveness of this method against the differentiated, amastigote form of the parasite using three distinct viability assays: PrestoBlue, Live/Dead stain and a novel luciferase-based assay. Changes in amastigote morphology and ultrastructure were assessed by immunofluorescence, scanning and transmission electron microscopy. Our findings show that magnetic hyperthermia is an effective method to kill host-infective amastigotes, with morphological changes consistent with heat treatment. This method has the potential to be a step-change for research into new therapeutic options that moves away from the expensive chemotherapeutics currently dominating the research climate.


Asunto(s)
Hipertermia Inducida/métodos , Leishmania mexicana/patogenicidad , Nanopartículas de Magnetita/química , Nanopartículas/química , Supervivencia Celular/fisiología , Citometría de Flujo , Humanos , Microscopía Electrónica de Transmisión , Microscopía Fluorescente
3.
Nanoscale ; 10(44): 20519-20525, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30397703

RESUMEN

Magnetic hyperthermia is a potential technique for cancer therapy that exploits heat generated by magnetic nanoparticles to kill cancerous cells. Many studies have shown that magnetic hyperthermia is effective at killing cancer cells both in vitro and in vivo, however little attention has been paid to the cellular functioning of the surviving cells. We report here new evidence demonstrating the onset of thermally triggered differentiation in osteosarcoma cancer cells that survive magnetic hyperthermia treatment. This raises the possibility that in addition to causing cell death, magnetic hyperthermia could induce surviving cancer cells to form more mature cell types and thereby inhibit their capacity to self-renew. Such processes could prove to be as important as cell death when considering magnetic hyperthermia for treating cancer.


Asunto(s)
Nanopartículas de Magnetita/química , Fosfatasa Alcalina/análisis , Fosfatasa Alcalina/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , ADN/análisis , ADN/metabolismo , Humanos , Hipertermia Inducida , Nanopartículas de Magnetita/toxicidad , Espectrometría de Fluorescencia , Temperatura
4.
ACS Nano ; 12(3): 2741-2752, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29508990

RESUMEN

Magnetic nanoparticles exposed to alternating magnetic fields have shown a great potential acting as magnetic hyperthermia mediators for cancer treatment. However, a dramatic and unexplained reduction of the nanoparticle magnetic heating efficiency has been evidenced when nanoparticles are located inside cells or tissues. Recent studies suggest the enhancement of nanoparticle clustering and/or immobilization after interaction with cells as possible causes, although a quantitative description of the influence of biological matrices on the magnetic response of magnetic nanoparticles under AC magnetic fields is still lacking. Here, we studied the effect of cell internalization on the dynamical magnetic response of iron oxide nanoparticles (IONPs). AC magnetometry and magnetic susceptibility measurements of two magnetic core sizes (11 and 21 nm) underscored differences in the dynamical magnetic response following cell uptake with effects more pronounced for larger sizes. Two methodologies have been employed for experimentally determining the magnetic heat losses of magnetic nanoparticles inside live cells without risking their viability as well as the suitability of magnetic nanostructures for in vitro hyperthermia studies. Our experimental results-supported by theoretical calculations-reveal that the enhancement of intracellular IONP clustering mainly drives the cell internalization effects rather than intracellular IONP immobilization. Understanding the effects related to the nanoparticle transit into live cells on their magnetic response will allow the design of nanostructures containing magnetic nanoparticles whose dynamical magnetic response will remain invariable in any biological environments, allowing sustained and predictable in vivo heating efficiency.


Asunto(s)
Compuestos Férricos/uso terapéutico , Hipertermia Inducida/métodos , Nanopartículas de Magnetita/uso terapéutico , Neoplasias de la Mama/terapia , Femenino , Compuestos Férricos/farmacocinética , Humanos , Células MCF-7 , Campos Magnéticos , Nanopartículas de Magnetita/análisis
5.
Nanoscale ; 6(21): 12958-70, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25232657

RESUMEN

Magnetic hyperthermia uses AC stimulation of magnetic nanoparticles to generate heat for cancer cell destruction. Whilst nanoparticles produced inside magnetotactic bacteria have shown amongst the highest reported heating to date, these particles are magnetically blocked so that strong heating occurs only for mobile particles, unless magnetic field parameters are far outside clinical limits. Here, nanoparticles extracellularly produced by the bacteria Geobacter sulfurreducens are investigated that contain Co or Zn dopants to tune the magnetic anisotropy, saturation magnetization and nanoparticle sizes, enabling heating within clinical field constraints. The heating mechanisms specific to either Co or Zn doping are determined from frequency dependent specific absorption rate (SAR) measurements and innovative AC susceptometry simulations that use a realistic model concerning clusters of polydisperse nanoparticles in suspension. Whilst both particle types undergo magnetization relaxation and show heating effects in water under low AC frequency and field, only Zn doped particles maintain relaxation combined with hysteresis losses even when immobilized. This magnetic heating process could prove important in the biological environment where nanoparticle mobility may not be possible. Obtained SARs are discussed regarding clinical conditions which, together with their enhanced MRI contrast, indicate that biogenic Zn doped particles are promising for combined diagnostics and cancer therapy.


Asunto(s)
Bacterias/metabolismo , Compuestos Férricos/química , Hipertermia Inducida/métodos , Nanopartículas de Magnetita/química , Anisotropía , Ácido Cítrico/química , Cobalto/química , Medios de Contraste/química , Geobacter , Calor , Campos Magnéticos , Magnetismo , Microscopía Electrónica de Transmisión , Nanotecnología , Tamaño de la Partícula , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA