Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Res Int ; 158: 111496, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35840205

RESUMEN

The feasibility of using microwave-infrared heating (MIR) to stimulate color/flavor changes of 3D-printed white radish and potato gels containing lipid-soluble natural pigment and essence microcapsules was investigated. Natural red gromwell pigment and rose essence were microencapsulated using gum Arabic/maltodextrin/ß-cyclodextrin as the wall materials and spray drying as the drying method. The microcapsules were incorporated into white radish and potato powder at different mass ratios (0, 0.3, 0.7, 1, and 2%, w/w) and the mixture were used as 3D printing ink. The storage modulus and loss modulus of printing paste were decreased with the increasing microcapsule addition; however, the viscosity was not significantly affected. The texture properties (hardness, springness, chewiness, and gumminess) of printed samples after MIR were increased significantly. The color and flavor of the samples changed in a microcapsule concentration- and heating time-dependent manner. With the prolongation of heating time, the brightness value (L*) of the printed sample added with microcapsules was decreased, while the redness (a*) and yellowness value (b*) were significantly increased. The results of electronic nose showed that the flavor of 2% (w/w) microcapsule samples was significantly different before and after heating, and the signals of sensors S1, S4, S5, S9, S11, S14, S16, S17 increased significantly after heating. This research has provided insights for the development of novel 3D printed foods with bright colors and unique flavors.


Asunto(s)
Raphanus , Solanum tuberosum , Cápsulas , Geles , Calefacción , Microondas , Impresión Tridimensional
2.
Food Chem ; 388: 132945, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35472626

RESUMEN

In order to lower the nitrite content in prepared vegetable dishes (PVDs) within a week, microcapsules loaded with garlic essential oils (GEO) were prepared using modified chitosan (CS) with different mass ratios of gallic acid (GA) to CS, and their physicochemical properties were determined. The effects of GEO alone and of microcapsules made using native CS and GA-CS (GA-grafted CS) with the highest conjugation degree on the nitrite content in PVDS were measured quantitatively. Also, the reasons for the differences were identified. The results showed that the microcapsules prepared using GA-CS (at a mass ratio of 0.5:1) presented the best physicochemical properties, including antioxidant activity, encapsulation efficiency, sustained release, etc. GA-CS microcapsules enhanced growth inhibition of bacteria producing nitrites, thus showing its excellent ability to inhibit nitrites, compared to GEO alone and microcapsules made using native CS. GA-CS encapsulation is a new option to lower the nitrite content in PVDs.


Asunto(s)
Quitosano , Ajo , Aceites Volátiles , Antioxidantes/química , Cápsulas/química , Quitosano/química , Ácido Gálico/química , Nitritos , Verduras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA