Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 20(24)2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31847143

RESUMEN

Dietary supplementation with omega-3 and omega-6 fatty acids offer cardioprotection against air pollution, but these protections have not been established in the brain. We tested whether diets rich in omega-3 or -6 fatty acids offered neuroprotective benefits, by measuring mitochondrial complex enzyme I, II and IV activities and oxidative stress measures in the frontal cortex, cerebellum, hypothalamus, and hippocampus of male rats that were fed either a normal diet, or a diet enriched with fish oil olive oil, or coconut oil followed by exposure to either filtered air or ozone (0.8 ppm) for 4 h/day for 2 days. Results show that mitochondrial complex I enzyme activity was significantly decreased in the cerebellum, hypothalamus and hippocampus by diets. Complex II enzyme activity was significantly lower in frontal cortex and cerebellum of rats maintained on all test diets. Complex IV enzyme activity was significantly lower in the frontal cortex, hypothalamus and hippocampus of animals maintained on fish oil. Ozone exposure decreased complex I and II activity in the cerebellum of rats maintained on the normal diet, an effect blocked by diet treatments. While diet and ozone have no apparent influence on endogenous reactive oxygen species production, they do affect antioxidant levels in the brain. Fish oil was the only diet that ozone exposure did not alter. Microglial morphology and GFAP immunoreactivity were assessed across diet groups; results indicated that fish oil consistently decreased reactive microglia in the hypothalamus and hippocampus. These results indicate that acute ozone exposure alters mitochondrial bioenergetics in brain and co-treatment with omega-6 and omega-3 fatty acids alleviate some adverse effects within the brain.


Asunto(s)
Encéfalo/metabolismo , Aceite de Coco/farmacología , Metabolismo Energético/efectos de los fármacos , Aceites de Pescado/farmacología , Mitocondrias/metabolismo , Aceite de Oliva/farmacología , Animales , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-6/farmacología , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Microglía/metabolismo , Ratas , Ratas Endogámicas WKY
2.
Sci Rep ; 9(1): 145, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30644404

RESUMEN

Heart rate assays in wild-type zebrafish embryos have been limited to analysis of one embryo per video/imaging field. Here we present for the first time a platform for high-throughput derivation of heart rate from multiple zebrafish (Danio rerio) embryos per imaging field, which is capable of quickly processing thousands of videos and ideal for multi-well platforms with multiple fish/well. This approach relies on use of 2-day post fertilization wild-type embryos, and uses only bright-field imaging, circumventing requirement for anesthesia or restraint, costly software/hardware, or fluorescently-labeled animals. Our original scripts (1) locate the heart and record pixel intensity fluctuations generated by each cardiac cycle using a robust image processing routine, and (2) process intensity data to derive heart rate. To demonstrate assay utility, we exposed embryos to the drugs epinephrine and clonidine, which increased or decreased heart rate, respectively. Exposure to organic extracts of air pollution-derived particulate matter, including diesel or biodiesel exhausts, or wood smoke, all complex environmental mixtures, decreased heart rate to varying degrees. Comparison against an established lower-throughput method indicated robust assay fidelity. As all code and executable files are publicly available, this approach may expedite cardiotoxicity screening of compounds as diverse as small molecule drugs and complex chemical mixtures.


Asunto(s)
Frecuencia Cardíaca/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Animales , Cardiotoxicidad , Evaluación Preclínica de Medicamentos/métodos , Embrión no Mamífero , Procesamiento de Imagen Asistido por Computador , Material Particulado/toxicidad , Pez Cebra/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA