Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
DNA Res ; 29(5)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36007888

RESUMEN

Onions are one of the most widely cultivated vegetables worldwide; however, the development and utilization of molecular markers have been limited because of the large genome of this plant. We present a genome-wide marker design workflow for onions and its application in a high-throughput genotyping method based on target amplicon sequencing. The efficiency of the method was evaluated by genotyping of F2 populations. In the marker design workflow, unigene and genomic sequence data sets were constructed, and polymorphisms between parental lines were detected through transcriptome sequence analysis. The positions of polymorphisms detected in the unigenes were mapped onto the genome sequence, and primer sets were designed. In total, 480 markers covering the whole genome were selected. By genotyping an F2 population, 329 polymorphic sites were obtained from the estimated positions or the flanking sequences. However, missing or sparse marker regions were observed in the resulting genetic linkage map. We modified the markers to cover these regions by genotyping the other F2 populations. The grouping and order of markers on the linkages were similar across the genetic maps. Our marker design workflow and target amplicon sequencing are useful for genome-wide genotyping of onions owing to their reliability, cost effectiveness, and flexibility.


Asunto(s)
Genoma de Planta , Cebollas , Mapeo Cromosómico/métodos , Ligamiento Genético , Genotipo , Técnicas de Genotipaje/métodos , Cebollas/genética , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Análisis de Secuencia , Flujo de Trabajo
2.
Mol Genet Genomics ; 296(3): 705-717, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33772345

RESUMEN

Cytoplasmic male sterility (CMS) observed in many plants leads defect in the production of functional pollen, while the expression of CMS is suppressed by a fertility restorer gene in the nuclear genome. Ogura CMS of radish is induced by a mitochondrial orf138, and a fertility restorer gene, Rfo, encodes a P-type PPR protein, ORF687, acting at the translational level. But, the exact function of ORF687 is still unclear. We found a Japanese variety showing male sterility even in the presence of Rfo. We examined the pollen fertility, Rfo expression, and orf138 mRNA in progenies of this variety. The progeny with Type H orf138 and Rfo showed male sterility when their orf138 mRNA was unprocessed within the coding region. By contrast, all progeny with Type A orf138 were fertile though orf138 mRNA remained unprocessed in the coding region, demonstrating that ORF687 functions on Type A but not on Type H. In silico analysis suggested a specific binding site of ORF687 in the coding region, not the 5' untranslated region estimated previously, of Type A. A single nucleotide substitution in the putative binding site diminishes affinity of ORF687 in Type H and is most likely the cause of the ineffectiveness of ORF687. Furthermore, fertility restoration by RNA processing at a novel site in some progeny plants indicated a new and the third fertility restorer gene, Rfs, for orf138. This study clarified that direct ORF687 binding to the coding region of orf138 is essential for fertility restoration by Rfo.


Asunto(s)
Proteínas de Arabidopsis/genética , Fertilidad/genética , Genes de Plantas/genética , Nucleótidos/genética , Sistemas de Lectura Abierta/genética , Polimorfismo de Nucleótido Simple/genética , Proteínas Quinasas/genética , Raphanus/genética , Regiones no Traducidas 5'/genética , Aminoácidos/genética , Secuencia de Bases , Citoplasma/genética , Regulación de la Expresión Génica de las Plantas/genética , Mitocondrias/genética , Infertilidad Vegetal/genética , Proteínas de Plantas/genética , Polen/genética , Procesamiento Postranscripcional del ARN/genética , ARN Mensajero/genética
3.
Mitochondrion ; 46: 179-186, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30006008

RESUMEN

The structures of plant mitochondrial genomes are more complex than those of animals. One of the reasons for this is that plant mitochondrial genomes typically have many long and short repeated sequences and intra- and intermolecular recombination may create various DNA molecules in this organelle. Recombination may sometimes create a novel gene that causes cytoplasmic male sterility (CMS). The onion has several cytoplasm types, with some causing CMS while others do not. The complete mitochondrial genome sequence of the onion was reported for an inbred line with CMS-S cytoplasm; however, the number of differences between onion strains remains unclear, and studies on purified mitochondrial DNA (mtDNA) have not yet been performed. Furthermore, analyses of transcripts in the mitochondrial genome have not been conducted. In the present study, we examined the mitochondrial genome of the onion variety "Momiji-3" (Allium cepa L.) possessing CMS-S-type cytoplasm using next-generation sequencing (NGS). The "Momiji-3" mitochondrial genome mainly exists as three circles as a result of recombination through repeated sequences and we herein succeeded for the first time in visualizing its structure using pulsed field gel electrophoresis (PFGE). The ability to clarify the structure of the mitochondrial genome is rare in plant mitochondria; therefore, "Momiji-3" represents a good example for elucidating complex plant mitochondrial genomes. We also mapped transcript data to the mitochondrial genome in order to identify the RNA-editing positions in all gene-coding regions and estimate the expression levels of genes. We identified 635 editing positions in gene-coding regions. Start and stop codons were created by RNA editing in six genes (nad1, nad4L, atp6, atp9, ccmFC, and orf725). The transcript amounts of novel open reading frames (ORFs) were all markedly lower than those of functional genes. These results suggest that a new functional gene was not present in the mitochondrial genome of "Momiji-3", and that the candidate gene for CMS is orf725, as previously reported.


Asunto(s)
Perfilación de la Expresión Génica , Genoma Mitocondrial , Cebollas/genética , ADN Circular/genética , ADN Mitocondrial/genética , Electroforesis en Gel de Campo Pulsado , Edición de ARN , Recombinación Genética
4.
Genome ; 52(6): 495-504, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19483769

RESUMEN

To reveal the molecular and genetic mechanism of fertility restoration in Ogura male sterility in Japanese wild radish (Raphanus sativus var. hortensis f. raphanistroides), we investigated fertility restoration of a plant that lacks the dominant type of orf687, a previously identified fertility restorer gene. A total of 100 F2 plants were made from the cross between a male-sterile strain with the Ogura cytoplasm, 'MS-Gensuke', and a Japanese wild radish plant. Segregation of pollen fertility in the F2 plants led us to assume that 2 dominant complementary genes controlled the fertility restoration of the plants. However, the fertility of 27 of 59 male-fertile plants was not completely restored, resulting in a group of plants with partial male fertility. Northern blot analysis of the CMS-associated gene orf138 indicated that one restorer allele (termed Rft) was involved in the processing of orf138 RNA. Rapid amplification of cDNA ends (RACE) and subsequent Northern blot analysis confirmed that the orf138 transcript lost a 5' part of the coding region of the orf138 gene in the restored plants. The accumulation of ORF138 protein was significantly reduced by Rft, but trace amounts of the protein were recognized in both partially male-fertile and male-sterile plants with Rft. The relationship of pollen fertility and segregation of co-dominant sequence tagged site (STS) markers in the F2 generation suggested that the penetrance of Rft was so low that Rft needs suitable conditions to function sufficiently for the complete restoration of fertility.


Asunto(s)
Proteínas Mitocondriales/genética , Infertilidad Vegetal/genética , Proteínas de Plantas/metabolismo , Procesamiento Postranscripcional del ARN , Raphanus/genética , Lugares Marcados de Secuencia , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Secuencia de Bases , Northern Blotting , Clonación Molecular , Citoplasma/genética , Citoplasma/metabolismo , ADN de Plantas/genética , Marcadores Genéticos , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/genética , Polen/genética , Reacción en Cadena de la Polimerasa
5.
Ann Bot ; 102(4): 483-9, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18625698

RESUMEN

BACKGROUND AND AIMS: Expression of the mitochondrial gene orf138 causes Ogura cytoplasmic male sterility (CMS) in Raphanus sativus, but little is known about the mechanism by which CMS takes place. A preliminary microarray experiment revealed that several nuclear genes concerned with flavonoid biosynthesis were inhibited in the male-sterile phenotype. In particular, a gene for one of the key enzymes for flavonoid biosynthesis, chalcone synthase (CHS), was strongly inhibited. A few reports have suggested that the inhibition of CHS causes nuclear-dependent male sterile expression; however, there do not appear to be any reports elucidating the effect of CHS on CMS expression. In this study, the expression patterns of the early genes in the flavonoid biosynthesis pathway, including CHS, were investigated in normal and male-sterile lines. METHODS: In order to determine the aberrant stage for CMS expression, the characteristics of male-sterile anthers are observed using light and transmission electron microscopy for several stages of flower buds. The expression of CHS and the other flavonoid biosynthetic genes in the anthers were compared between normal and male-sterile types using real time RT-PCR. KEY RESULTS: Among the flavonoid biosynthetic genes analysed, the expression of CHS was strongly inhibited in the later stages of anther development in sterility cytoplasm; accumulation of putative naringenin derivatives was also inhibited. CONCLUSIONS: These results show that flavonoids play an important role in the development of functional pollen, not only in nuclear-dependent male sterility, but also in CMS.


Asunto(s)
Aciltransferasas/genética , Flores/genética , Proteínas Mitocondriales/genética , Infertilidad Vegetal/genética , Proteínas de Plantas/genética , Raphanus/genética , Citoplasma/genética , Flores/crecimiento & desarrollo , Expresión Génica , Genes de Plantas , Microscopía Electrónica de Transmisión , Análisis de Secuencia por Matrices de Oligonucleótidos , Polen/genética , Raphanus/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
Genes Genet Syst ; 79(5): 283-91, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15599058

RESUMEN

According to the similarity of the amino acid sequences in their catalytic domains, eukaryotic protein kinases have been classified into the five main groups: 'AGC', 'CaMK', 'CMGC', 'PTK' and 'other'. The AGC group, represented by the cyclic nucleotide-dependent kinases (PKA and PKG), the calcium-phospholipid-dependent kinases (PKC) and the ribosomal S6 protein kinases, are poorly characterized in plants except for a few cases. In this study, in order to gain a better understanding of plant protein kinases in the AGC group, three cDNAs encoding novel protein kinases, RsNdr1 and RsNdr2a/b, were cloned from radish and characterized by molecular and biochemical methods. The deduced amino acid sequences of RsNdr1 and RsNdr2a/b contained all 12 conserved catalytic subdomains which are characteristic of the eukaryotic Ser/Thr protein kinases. A cell lysate from E. coli overexpressing RsNdr1 fusion protein had protein kinase activity toward a conventional protein substrate (myelin basic protein), whereas that from E. coli harboring a fusion plasmid encoding kinase-dead RsNdr1 or RsNdr2 did not show any protein kinase activity. A phylogenetic tree for 17 protein kinases from various organisms showed that the RsNdrs are more closely related to the protein kinases in a particular subgroup of the 'AGC' (fungal cot1-like and animal Ndr kinases) than to the authentic 'AGC' protein kinases, such as PKA, PKC or ribosomal S6 kinase.


Asunto(s)
Proteínas Serina-Treonina Quinasas/genética , Raphanus/enzimología , Raphanus/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Dominio Catalítico/genética , Clonación Molecular , ADN Complementario/análisis , ADN de Plantas/análisis , Escherichia coli/enzimología , Datos de Secuencia Molecular , Proteínas Serina-Treonina Quinasas/química , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA