Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Minerva Pediatr ; 72(1): 30-36, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31621274

RESUMEN

BACKGROUND: Headache is one of the main complaints in pediatric neurology. Exogenous melatonin has been shown to be useful and safe in improving sleep-wake cycles and sleep quality in children. Tryptophan as well plays a key role in sleep regulation. So far, no studies tried to analyze the effects of a combination of both melatonin and tryptophan in treating chronic headache in children affected also by night-time awakenings. METHODS: Thirty-four children with a diagnosis of chronic headache (with or without sleep disorders) have been enrolled. The study was articulated in two steps: 1) each child was observed for one month without any intervention; 2) children have been then randomized into two groups: the "ME-group", which received the nutritional supplement melatonin for two months and the "MET-group", which received the nutritional supplements melatonin, tryptophan, and vitamin B6 for two months. RESULTS: In terms of changes in number of headache events, responders in the ME-group were 91.7% and those in the MET-group were 66.7% (P=0.113). In terms of changes in number of night awakenings, in the ME group, mean number at baseline, after 30 days, and after 60 days were 3.6±3.2, 3.2±3.5, and 2.7±3.4 (P=0.495). In the MET group, mean number of night awakenings was 7.4±8.1, 4.0±4.4, and 3.3±2.9 (P=0.041). CONCLUSIONS: Using either nutritional supplement for two months can help in decreasing the monthly number of headache episodes and night awakenings. The addition of tryptophan and vitamin B6 appears to have stronger influence on night awakenings reduction than melatonin only.


Asunto(s)
Suplementos Dietéticos , Cefaleas Primarias/tratamiento farmacológico , Melatonina/administración & dosificación , Trastornos del Sueño-Vigilia/tratamiento farmacológico , Triptófano/administración & dosificación , Vitamina B 6/administración & dosificación , Adolescente , Antidepresivos de Segunda Generación/administración & dosificación , Antioxidantes/administración & dosificación , Niño , Femenino , Cefaleas Primarias/complicaciones , Humanos , Italia , Masculino , Proyectos Piloto , Trastornos del Sueño-Vigilia/complicaciones , Complejo Vitamínico B/administración & dosificación
2.
Brain ; 142(7): e39, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31145451

RESUMEN

Epilepsy therapy is based on antiseizure drugs that treat the symptom, seizures, rather than the disease and are ineffective in up to 30% of patients. There are no treatments for modifying the disease-preventing seizure onset, reducing severity or improving prognosis. Among the potential molecular targets for attaining these unmet therapeutic needs, we focused on oxidative stress since it is a pathophysiological process commonly occurring in experimental epileptogenesis and observed in human epilepsy. Using a rat model of acquired epilepsy induced by electrical status epilepticus, we show that oxidative stress occurs in both neurons and astrocytes during epileptogenesis, as assessed by measuring biochemical and histological markers. This evidence was validated in the hippocampus of humans who died following status epilepticus. Oxidative stress was reduced in animals undergoing epileptogenesis by a transient treatment with N-acetylcysteine and sulforaphane, which act to increase glutathione levels through complementary mechanisms. These antioxidant drugs are already used in humans for other therapeutic indications. This drug combination transiently administered for 2 weeks during epileptogenesis inhibited oxidative stress more efficiently than either drug alone. The drug combination significantly delayed the onset of epilepsy, blocked disease progression between 2 and 5 months post-status epilepticus and drastically reduced the frequency of spontaneous seizures measured at 5 months without modifying the average seizure duration or the incidence of epilepsy in animals. Treatment also decreased hippocampal neuron loss and rescued cognitive deficits. Oxidative stress during epileptogenesis was associated with de novo brain and blood generation of high mobility group box 1 (HMGB1), a neuroinflammatory molecule implicated in seizure mechanisms. Drug-induced reduction of oxidative stress prevented HMGB1 generation, thus highlighting a potential novel mechanism contributing to therapeutic effects. Our data show that targeting oxidative stress with clinically used drugs for a limited time window starting early after injury significantly improves long-term disease outcomes. This intervention may be considered for patients exposed to potential epileptogenic insults.


Asunto(s)
Acetilcisteína/farmacología , Epilepsia/prevención & control , Glutatión/metabolismo , Isotiocianatos/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Astrocitos/metabolismo , Biomarcadores/metabolismo , Estudios de Casos y Controles , Recuento de Células , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/prevención & control , Modelos Animales de Enfermedad , Estimulación Eléctrica , Epilepsia/complicaciones , Proteína HMGB1/sangre , Hipocampo/metabolismo , Humanos , Masculino , Neuronas/metabolismo , Neuronas/patología , Ratas , Estado Epiléptico/complicaciones , Estado Epiléptico/metabolismo , Estado Epiléptico/prevención & control , Sulfóxidos
3.
Curr Pharm Des ; 23(37): 5569-5576, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28950818

RESUMEN

BACKGROUND: The lack of treatments which can prevent epilepsy development or improve disease prognosis represents an unmet and urgent clinical need. The development of such drugs requires a deep understanding of the mechanisms underlying disease pathogenesis. In the last decade, preclinical studies in models of acute seizures and of chronic epilepsy highlighted that neuroinflammation arising in brain areas of seizure onset and generalization is a key contributor to neuronal hyper-excitability underlying seizure generation. Microglia and astrocytes are pivotal cells involved in both the induction and perpetuation of the inflammatory response to epileptogenic injuries or seizures; other cell contributors are neurons, cell components of the blood brain barrier and leukocytes. METHODS: From the clinical standpoint, neuroinflammation is now considered an hallmark of epileptogenic foci in various forms of focal onset pharmacoresistant epilepsies. Moreover, pharmacological studies in animal model with drugs targeting specific inflammatory molecules, and changes in intrinsic seizure susceptibility of transgenic mice with perturbed neuroinflammatory mechanisms, have demonstrated that neuroinflammation is not a bystander phenomenon but has a pathogenic role in seizures, cell loss and neurological co-morbidities. Understanding the role of neuroinflammation in seizure pathogenesis is instrumental for a mechanism-based discovery of selective therapies targeting the epilepsy causes rather than its symptoms, thereby allowing the development of novel disease-modifying treatments. Notably, clinical translation of laboratory findings may take advantage of anti-inflammatory drugs already in medical use for peripheral autoinflammatory or autoimmune disorders. CONCLUSION: This review reports key preclinical and clinical findings supporting a role for brain inflammation in the pathogenesis of seizures. It also highlights the emerging proof-of-concept studies showing signs of clinical efficacy of target-specific anti-inflammatory interventions in epilepsies of differing etiologies. We will discuss the need for biomarkers and novel clinical trial designs for anti-inflammatory therapies that have a mechanism of action very different than standard antiepileptic drugs.


Asunto(s)
Antiinflamatorios/uso terapéutico , Anticonvulsivantes/uso terapéutico , Encefalitis/complicaciones , Epilepsia/tratamiento farmacológico , Epilepsia/patología , Animales , Evaluación Preclínica de Medicamentos , Epilepsia/etiología , Humanos
4.
Brain ; 140(7): 1885-1899, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575153

RESUMEN

Epilepsy therapy is based on antiseizure drugs that treat the symptom, seizures, rather than the disease and are ineffective in up to 30% of patients. There are no treatments for modifying the disease-preventing seizure onset, reducing severity or improving prognosis. Among the potential molecular targets for attaining these unmet therapeutic needs, we focused on oxidative stress since it is a pathophysiological process commonly occurring in experimental epileptogenesis and observed in human epilepsy. Using a rat model of acquired epilepsy induced by electrical status epilepticus, we show that oxidative stress occurs in both neurons and astrocytes during epileptogenesis, as assessed by measuring biochemical and histological markers. This evidence was validated in the hippocampus of humans who died following status epilepticus. Oxidative stress was reduced in animals undergoing epileptogenesis by a transient treatment with N-acetylcysteine and sulforaphane, which act to increase glutathione levels through complementary mechanisms. These antioxidant drugs are already used in humans for other therapeutic indications. This drug combination transiently administered for 2 weeks during epileptogenesis inhibited oxidative stress more efficiently than either drug alone. The drug combination significantly delayed the onset of epilepsy, blocked disease progression between 2 and 5 months post-status epilepticus and drastically reduced the frequency of spontaneous seizures measured at 5 months without modifying the average seizure duration or the incidence of epilepsy in animals. Treatment also decreased hippocampal neuron loss and rescued cognitive deficits. Oxidative stress during epileptogenesis was associated with de novo brain and blood generation of disulfide high mobility group box 1 (HMGB1), a neuroinflammatory molecule implicated in seizure mechanisms. Drug-induced reduction of oxidative stress prevented disulfide HMGB1 generation, thus highlighting a potential novel mechanism contributing to therapeutic effects. Our data show that targeting oxidative stress with clinically used drugs for a limited time window starting early after injury significantly improves long-term disease outcomes. This intervention may be considered for patients exposed to potential epileptogenic insults.


Asunto(s)
Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Epilepsia/tratamiento farmacológico , Dominios HMG-Box/efectos de los fármacos , Proteína HMGB1/sangre , Proteína HMGB1/metabolismo , Isotiocianatos/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Animales , Astrocitos/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/tratamiento farmacológico , Modelos Animales de Enfermedad , Quimioterapia Combinada , Epilepsia/metabolismo , Proteína HMGB1/biosíntesis , Hipocampo/metabolismo , Isotiocianatos/farmacología , Masculino , Degeneración Nerviosa/dietoterapia , Neuronas/metabolismo , Ratas , Sulfóxidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA