Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 28(12): 14983-15004, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33222070

RESUMEN

Onosma bracteata Wall. (Boraginaceae), commonly known as "gaozaban" is a highly valuable medicinal herb, useful in the treatment of body swellings, abdominal pain, eye-related problems, fever, and urinary calculi. The present study was performed to investigate the antioxidant properties of extract/fractions, viz. ethanol (Obeth) extract, hexane (Obhex) fraction, chloroform (Obcl) fraction, ethyl acetate (Obea) fraction, butanol (Obbu) fraction, and aqueous (Obaq) fraction isolated from O. bracteata. Obea fraction showed stronger free radical quenching ability in various antioxidant assays, as compared to the other fractions. Obea fraction with effective free radical-scavenging properties was further evaluated for the antiproliferative activity against human osteosarcoma MG-63, human neuroblastoma IMR-32, and human lung cancer A549 cell lines using MTT assay. Obea fraction showed strong cytotoxicity with GI50 value of 88.56, 101.61, and 112.7 µg/ml towards MG-63, IMR-32, and A549 cells respectively. Mechanistic studies revealed that Obea fraction in osteosarcoma MG-63 cells increased reactive oxygen species (ROS) level and reduced mitochondrial membrane potential. In the presence of Obea, the cells were found to be arrested in the G0/G1 phase in a dose-dependent manner which is also confirmed by the enhancement in the early apoptotic cell population in flow cytometer analysis. Western blotting demonstrated the decrease in expression of p-NFκB, COX-2, p-Akt, and Bcl-xL, whereas upregulation was observed in the expression of GSK-3ß, p53, caspase-3, and caspase-9 proteins. RT-qPCR studies revealed downregulation of Bcl-2, cyclin E, CDK2, and mortalin gene expression and upregulation in the expression of p53 genes. The antioxidant and cytotoxic potential of Obea was attributed to the presence of catechin, kaempferol, onosmin A, and epicatechin, as revealed by HPLC analysis. This is the first report regarding the antiproliferative potential of O. bracteata against osteosarcoma.


Asunto(s)
Boraginaceae , Osteosarcoma , Apoptosis , Línea Celular Tumoral , Ciclina E , Glucógeno Sintasa Quinasa 3 beta , Humanos , Osteosarcoma/tratamiento farmacológico , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-akt , Especies Reactivas de Oxígeno
2.
Antioxidants (Basel) ; 9(2)2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32093300

RESUMEN

: Cassia fistula L. is a highly admirable traditional medicinal plant used for the treatment of various diseases and disorders. The present study was performed to divulge the antioxidant, antiproliferative, and apoptosis-inducing efficacy of fractions from C. fistula leaves. The hexane (CaLH fraction), chloroform (CaLC fraction), ethyl acetate (CaLE fraction), n-butanol (CaLB fraction), and aqueous (CaLA fraction) were sequentially fractionated from 80% methanolic (CaLM extract) of C. fistula leaves. The CaLE fraction was fractionated using column chromatography to yield a pure compound, which was characterized as Epiafzelechin (CFL1) based on 1H, 13C, and DEPT135 NMR. Among these fractions, CaLE and isolated CFL1 fractions exhibited an effective antioxidant potential in Ferric ion reducing power, (2,2'-azino-bis (3-ethylbenzothiazoline -6-sulfonic acid)) cation radical scavenging, and nitric oxide radical scavenging assays. Epiafzelechin was investigated for its antiproliferative effects against MG-63 (osteosarcoma), IMR-32 (neuroblastoma), and PC-3 (prostate adenocarcinoma), and was found to inhibit cell proliferation with a GI50 value of 8.73, 9.15, and 11.8 µM respectively. MG-63 cells underwent apoptotic cell death on treatment with Epiafzelechin as the cells showed the formation of apoptotic bodies, enhanced reactive oxygen species (ROS) generation, mitochondrial membrane depolarization along with an increase in early apoptotic cell population analyzed using Annexin V-FITC/PI double staining assay. Cells showed cell cycle arrest at the G0/G1 phase accompanied by a downregulation in the expression levels of p-Akt (Protein kinase B), p-GSK-3ß (Glycogen synthase kinase-3 beta), and Bcl-xl (B-cell lymphoma-extra large) proteins. RT-PCR (Real time-polymerase chain reaction) analysis revealed downregulation in the gene expression level of ß-catenin and CDK2 (cyclin-dependent kinases-2) while it upregulated the expression level of caspase-8 and p53 genes in MG-63 cells.

3.
BMC Plant Biol ; 17(1): 56, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28245791

RESUMEN

BACKGROUND: Pesticides cause oxidative stress to plants and their residues persist in plant parts, which are a major concern for the environment as well as human health. Brassinosteroids (BRs) are known to protect plants from abiotic stress conditions including pesticide toxicity. The present study demonstrated the effects of seed-soaking with 24-epibrassinolide (EBR) on physiological responses of 10-day old Brassica juncea seedlings grown under imidacloprid (IMI) toxicity. RESULTS: In the seedlings raised from EBR-treated seeds and grown under IMI toxicity, the contents of hydrogen peroxide (H2O2) and superoxide anion (O.2-) were decreased, accompanied by enhanced activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione-S-transferase (GST), guaiacol peroxidase (POD) and the content of glutathione (GSH). As compared to controls, the gene expressions of SOD, CAT, GR, POD, NADH (NADH-ubiquinone oxidoreductase), CXE (carboxylesterase), GSH-S (glutathione synthase), GSH-T (glutathione transporter-1), P450 (cytochrome P450 monooxygenase) and GST1-3,5-6 were enhanced in the seedlings raised from EBR-treated seeds and grown in IMI supplemented substratum. However, expression of RBO (respiratory burst oxidase, the gene responsible for H2O2 production) was decreased in seedlings raised from EBR treated seeds and grown under IMI toxicity. Further, the EBR seed treatment decreased IMI residues by more than 38% in B. juncea seedlings. CONCLUSIONS: The present study revealed that EBR seed soaking can efficiently reduce oxidative stress and IMI residues by modulating the gene expression of B. juncea under IMI stress. In conclusion, exogenous EBR application can protect plants from pesticide phytotoxicity.


Asunto(s)
Brasinoesteroides/farmacología , Imidazoles/antagonistas & inhibidores , Insecticidas/antagonistas & inhibidores , Planta de la Mostaza/efectos de los fármacos , Planta de la Mostaza/genética , Nitrocompuestos/antagonistas & inhibidores , Reguladores del Crecimiento de las Plantas/farmacología , Esteroides Heterocíclicos/farmacología , Expresión Génica/efectos de los fármacos , Genes de Plantas/efectos de los fármacos , Glutatión/metabolismo , Imidazoles/toxicidad , Inactivación Metabólica/genética , Insecticidas/toxicidad , Planta de la Mostaza/enzimología , Neonicotinoides , Nitrocompuestos/toxicidad , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Semillas/efectos de los fármacos , Semillas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA