Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cytokine ; 148: 155588, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34403896

RESUMEN

Animals protect themselves against pathogens or abiotic factors by innate or adaptive mechanisms. Long-chain polyunsaturated fatty acids (ω3) of microalgae modify both human and mice' immune systems resulting in a beneficial balance between pro-inflammatory and anti-inflammatory pathways. However, scarce information exists on their impact on lactating animals' immunity. The objective of this study was to investigate the impact of dietary inclusion of Schizochytrium sp. (rich in docosapentaenoic and docosahexaenoic acid), on the expression of several genes involved in the innate immunity of goats. Twenty-four dairy goats were divided into four homogeneous sub-groups (n = 6). All goats were fed individually with alfalfa hay and concentrate. The concentrate of the control group (CON) had no microalgae while those of the treated groups were supplemented daily with 20 (ALG20), 40 (ALG40), and 60 (ALG60) g Schizochytrium sp. Monocytes and neutrophils were isolated from goats' blood in the 20th, 40th, and 60th days from the beginning of the experimental period. The relative transcript levels of TLR4, MYD88, MAPK, IRF3, IFNG, and pro-inflammatory cytokines (IL1B, IL2, IL8, TNF), and chemokines (CCL5 and CXCL16) were decreased in monocytes of microalgae treated goats compared to the CON. In contrast, MAPK and IL1B relative transcript levels were increased in neutrophils of ALG40 and ALG60 groups. In conclusion, the supplementation of goats' diet with 20 g Schizochytrium sp. resulted in a downregulation of the pro-inflammatory transcriptions, and following further research could be considered as a sustainable alternative strategy to improve immune function.


Asunto(s)
Suplementos Dietéticos , Regulación de la Expresión Génica , Cabras/genética , Microalgas/fisiología , Monocitos/metabolismo , Neutrófilos/metabolismo , Receptor Toll-Like 4/genética , Transcripción Genética , Animales , Análisis Discriminante , Conducta Alimentaria , Femenino , Sistema Inmunológico/metabolismo , Inflamación/patología , Modelos Biológicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Estadística como Asunto , Receptor Toll-Like 4/metabolismo
2.
J Dairy Res ; 86(3): 361-367, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31423963

RESUMEN

This research paper addresses the hypothesis that the fortification of goat milk base with whey protein concentrate (WPC) could affect both the textural and the biofunctional properties of set-style yoghurt. The effect of fortification of goat milk base with two different WPCs on thermophilic bacteria counts, proteolysis, physical and biofunctional properties of set-style yoghurts was studied at specific sampling points throughout a 4-week storage period. Fortification and storage did not influence thermophilic counts. Physical properties were affected significantly (P < 0.05) by the composition of the protein and the mineral fraction of the WPC but not by the storage. ACE-inhibitory activity was moderate in accordance to low lactobacilli counts and lack of proteolysis. DPPH-radical scavenging activity, Fe2+-chelating activity and superoxide scavenging activity were high. At 28 d an anti-inflammatory effect was observed, which was not affected by WPC addition.


Asunto(s)
Alimentos Fortificados/análisis , Cabras , Leche/química , Proteína de Suero de Leche/análisis , Yogur/análisis , Inhibidores de la Enzima Convertidora de Angiotensina/análisis , Animales , Carga Bacteriana , Fenómenos Químicos , Fermentación , Almacenamiento de Alimentos/métodos , Depuradores de Radicales Libres/análisis , Quelantes del Hierro/análisis , Lactobacillus/crecimiento & desarrollo , Lactobacillus/aislamiento & purificación , Yogur/microbiología
3.
Antioxidants (Basel) ; 8(5)2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31137881

RESUMEN

The present work was part of a project intended to evaluate whether organic selenium (Se) has the potential to protect against toxic effects exerted by cadmium (Cd). For this reason, 300 as-hatched, one-day-old broiler chickens were randomly allocated in four dietary treatments with five replicate pens per treatment. Chickens in T1 treatment, were offered a diet supplemented with 0.3 ppm Se (as Se-yeast), without added Cd; in T2 treatment, they were offered a diet with 0.3 ppm Se and 10 ppm Cd; in T3 treatment, they were offered a diet with 0.3 ppm Se and 100 ppm Cd; in T4 treatment, chickens were offered a diet supplemented with 3 ppm Se and 100 ppm Cd. Cadmium was added to the diets in T2, T3, and T4 as CdCl2. On the fourth and sixth weeks, liver and breast samples were obtained from two broilers per replicate pen. Relative gene expression levels of catalase (CAT), superoxide dismutase 1 (SOD1) and 2 (SOD2), methionine sulfoxide reductase A (MSRA) and B3 (MSRB3), iodothyronine deiodinase 1 (DIO1), 2 (DIO2), and 3 (DIO3), glutathione peroxidase 1 (GPX1) and 4 (GPX4), thioredoxin reductase 1 (TXNRD1) and 3 (TXNRD3), and metallothionein 3 (MT3) were analyzed by real-time quantitative PCR in liver, whereas the fatty-acid (FA) profile of breast muscle was determined by gas chromatography. Broilers supplemented with 0.3 ppm Se could tolerate low levels of Cd present in the diets, as there were no significant changes in the breast muscle FA profile, whereas excess Cd led to decreased polyunsaturated fatty acids (PUFAs), and in particular n-6 PUFA. Furthermore, treatments mainly affected the messenger RNA (mRNA) expression of SOD2, TXNRD3, and MT3, while age affected CAT, MSRB3, DIO2, DIO3, GPX4, TXNRD1, and MT3. In conclusion, dietary Se may help against the negative effects of Cd, but cannot be effective when Cd is present at excessive amounts in the diet.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA