Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Biochem Eng Biotechnol ; 148: 63-106, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25583224

RESUMEN

Terpenoids (isoprenoids) represent the largest and most diverse class of chemicals among the myriad compounds produced by plants. Plants employ terpenoid metabolites for a variety of basic functions in growth and development but use the majority of terpenoids for more specialized chemical interactions and protection in the abiotic and biotic environment. Traditionally, plant-based terpenoids have been used by humans in the food, pharmaceutical, and chemical industries, and more recently have been exploited in the development of biofuel products. Genomic resources and emerging tools in synthetic biology facilitate the metabolic engineering of high-value terpenoid products in plants and microbes. Moreover, the ecological importance of terpenoids has gained increased attention to develop strategies for sustainable pest control and abiotic stress protection. Together, these efforts require a continuous growth in knowledge of the complex metabolic and molecular regulatory networks in terpenoid biosynthesis. This chapter gives an overview and highlights recent advances in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways, and addresses the most important functions of volatile and nonvolatile terpenoid specialized metabolites in plants.


Asunto(s)
Plantas/metabolismo , Terpenos/química , Transferasas Alquil y Aril/química , Química Farmacéutica/métodos , Dimetilaliltranstransferasa/química , Genes de Plantas , Genómica , Luz , Ingeniería Metabólica/métodos , Familia de Multigenes , Extractos Vegetales/química
2.
PLoS Genet ; 8(2): e1002506, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22346763

RESUMEN

For self-pollinating plants to reproduce, male and female organ development must be coordinated as flowers mature. The Arabidopsis transcription factors AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8 regulate this complex process by promoting petal expansion, stamen filament elongation, anther dehiscence, and gynoecium maturation, thereby ensuring that pollen released from the anthers is deposited on the stigma of a receptive gynoecium. ARF6 and ARF8 induce jasmonate production, which in turn triggers expression of MYB21 and MYB24, encoding R2R3 MYB transcription factors that promote petal and stamen growth. To understand the dynamics of this flower maturation regulatory network, we have characterized morphological, chemical, and global gene expression phenotypes of arf, myb, and jasmonate pathway mutant flowers. We found that MYB21 and MYB24 promoted not only petal and stamen development but also gynoecium growth. As well as regulating reproductive competence, both the ARF and MYB factors promoted nectary development or function and volatile sesquiterpene production, which may attract insect pollinators and/or repel pathogens. Mutants lacking jasmonate synthesis or response had decreased MYB21 expression and stamen and petal growth at the stage when flowers normally open, but had increased MYB21 expression in petals of older flowers, resulting in renewed and persistent petal expansion at later stages. Both auxin response and jasmonate synthesis promoted positive feedbacks that may ensure rapid petal and stamen growth as flowers open. MYB21 also fed back negatively on expression of jasmonate biosynthesis pathway genes to decrease flower jasmonate level, which correlated with termination of growth after flowers have opened. These dynamic feedbacks may promote timely, coordinated, and transient growth of flower organs.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Flores/crecimiento & desarrollo , Flores/genética , Redes Reguladoras de Genes/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Oxilipinas/metabolismo , Fenotipo , Néctar de las Plantas/genética , Plantas Modificadas Genéticamente/genética , Polen/genética , Polen/crecimiento & desarrollo , Sesquiterpenos/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
New Phytol ; 193(4): 997-1008, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22187939

RESUMEN

Flowers have a high risk of pathogen attack because of their rich nutrient and moisture content, and high frequency of insect visitors. We investigated the role of (E)-ß-caryophyllene in floral defense against a microbial pathogen. This sesquiterpene is a common volatile compound emitted from flowers, and is a major volatile released from the stigma of Arabidopsis thaliana flowers. Arabidopsis thaliana lines lacking a functional (E)-ß-caryophyllene synthase or constitutively overexpressing this gene were challenged with Pseudomonas syringae pv. tomato DC3000, which is a bacterial pathogen of brassicaceous plants. Flowers of plant lines lacking (E)-ß-caryophyllene emission showed greater bacterial growth on their stigmas than did wild-type flowers, and their seeds were lighter and misshapen. By contrast, plant lines with ectopic (E)-ß-caryophyllene emission from vegetative parts were more resistant than wild-type plants to pathogen infection of leaves, and showed reduced cell damage and higher seed production. Based on in vitro experiments, (E)-ß-caryophyllene seems to act by direct inhibition of bacterial growth, rather than by triggering defense signaling pathways. (E)-ß-Caryophyllene thus appears to serve as a defense against pathogens that invade floral tissues and, like other floral volatiles, may play multiple roles in defense and pollinator attraction.


Asunto(s)
Arabidopsis/microbiología , Arabidopsis/fisiología , Flores/fisiología , Hojas de la Planta/microbiología , Sesquiterpenos/metabolismo , Sesquiterpenos/farmacología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/microbiología , Interacciones Huésped-Patógeno , Mutación , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Sesquiterpenos Policíclicos , Pseudomonas syringae/efectos de los fármacos , Pseudomonas syringae/patogenicidad , Semillas/metabolismo , Semillas/microbiología , Compuestos Orgánicos Volátiles
4.
Plant J ; 66(4): 591-602, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21284755

RESUMEN

Aromatic L-amino acid decarboxylases (AADCs) are key enzymes operating at the interface between primary and secondary metabolism. The Arabidopsis thaliana genome contains two genes, At2g20340 and At4g28680, encoding pyridoxal 5'-phosphate-dependent AADCs with high homology to the recently identified Petunia hybrida phenylacetaldehyde synthase involved in floral scent production. The At4g28680 gene product was recently biochemically characterized as an L-tyrosine decarboxylase (AtTYDC), whereas the function of the other gene product remains unknown. The biochemical and functional characterization of the At2g20340 gene product revealed that it is an aromatic aldehyde synthase (AtAAS), which catalyzes the conversion of phenylalanine and 3,4-dihydroxy-L-phenylalanine to phenylacetaldehyde and dopaldehyde, respectively. AtAAS knock-down and transgenic AtAAS RNA interference (RNAi) lines show significant reduction in phenylacetaldehyde levels and an increase in phenylalanine, indicating that AtAAS is responsible for phenylacetaldehyde formation in planta. In A. thaliana ecotype Columbia (Col-0), AtAAS expression was highest in leaves, and was induced by methyl jasmonate treatment and wounding. Pieris rapae larvae feeding on Col-0 leaves resulted in increased phenylacetaldehyde emission, suggesting that the emitted aldehyde has a defensive activity against attacking herbivores. In the ecotypes Sei-0 and Di-G, which emit phenylacetaldehyde as a predominant flower volatile, the highest expression of AtAAS was found in flowers and RNAi AtAAS silencing led to a reduction of phenylacetaldehyde formation in this organ. In contrast to ecotype Col-0, no phenylacetaldehyde accumulation was observed in Sei-0 upon wounding, suggesting that AtAAS and subsequently phenylacetaldehyde contribute to pollinator attraction in this ecotype.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Descarboxilasas de Aminoácido-L-Aromático/metabolismo , Hojas de la Planta/metabolismo , Tirosina Descarboxilasa/metabolismo , Acetaldehído/análogos & derivados , Acetaldehído/metabolismo , Acetatos/farmacología , Animales , Arabidopsis/efectos de los fármacos , Arabidopsis/parasitología , Proteínas de Arabidopsis/genética , Descarboxilasas de Aminoácido-L-Aromático/genética , Ciclopentanos/farmacología , Conducta Alimentaria , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Insectos/patogenicidad , Larva/patogenicidad , Odorantes , Oxilipinas/farmacología , Filogenia , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/parasitología , Polen/genética , Polen/metabolismo , Interferencia de ARN , Homología de Secuencia de Aminoácido , Tirosina Descarboxilasa/genética , Compuestos Orgánicos Volátiles/metabolismo , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA