Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemosphere ; 304: 135225, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35697102

RESUMEN

Biosynthesis of nanomaterials using plant extract makes them attractive in the field of photocatalysis as they are environmental friendly. The current study focused on the biosynthesis of ZnO/NiCo2S4 QDs (NCs) using Punica granatum fruit peel extract as the reducing agent. The nanomaterials were characterized with XRD, FTIR, Raman, SEM, TEM, UV-vis DRS, BET, PL, EIS, and ESR analysis and were used for photocatalytic degradation of doxycycline (DOX) and ciprofloxacin (CIP). The bandgap of ZnO is 3.2 eV, and the decoration of NiCo2S4 QDs aids in narrowing the bandgap (2.8 eV), making the NCs visible light active. The fabricated NCs achieved 99 and 89% degradation of DOX and CIP respectively. The photocatalytic efficiency of ZnO/NiCo2S4 QDs was much higher compared to individual ZnO and NiCo2S4 QDs. The half-life period of DOX and CIP were evaluated to be 58 and 152 min respectively. The percentage of TOC removal in the photodegraded product of DOX and CIP was estimated to be 99 and 89% respectively, indicating the mineralization of the compounds. The enhanced photocatalytic efficiency of the NCs was attributed to the narrowed visible light active bandgap, synergistic charge transfer across the interface, and lower charge recombination. The intermediates formed during the photocatalytic degradation of DOX and CIP were analyzed using GC-MS/MS analysis, and the photodegradation pathway was elucidated. Also, the toxicity of the intermediates was computationally analyzed using ECOSAR software. The fabricated ZnO/NiCo2S4 QDs have excellent stability and reusability, confirmed by XRD and XPS analysis. The reusable efficiency of the NCs for the photocatalytic degradation of DOX and CIP were 98.93, and 99.4% respectively. Thus, the biologically fabricated NCs are shown to be an excellent photocatalyst and have wide applications in environmental remediation.


Asunto(s)
Granada (Fruta) , Óxido de Zinc , Ciprofloxacina , Doxiciclina , Electrones , Frutas , Luz , Extractos Vegetales , Espectrometría de Masas en Tándem
2.
Chemosphere ; 303(Pt 1): 134963, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35588875

RESUMEN

Pharmaceutical pollutant in the environmental water bodies has become a major concern, which causes adverse effect to aquatic entities. This study provides an incisive insight on the photocatalytic degradation of ciprofloxacin (CIP) and the development of rationally engineered g-C3N4-NiCo2O4-Zn0.3Fe2·7O4 nanocomposite for boosted photocatalytic performance under visible light irradiation. The g-C3N4-NiCo2O4-Zn0.3Fe2·7O4 nanocomposite was synthesized via ultrasonication-assisted hydrothermal method. The characterization of the as-prepared material was evaluated by XPS, SEM, HR-TEM, PL, FT-IR, EIS, ESR, XRD, BET, and UV-Vis DRS techniques. Furthermore, the effect of catalytic dosage, drug dosage, and pH changes was explored, where g-C3N4-NiCo2O4-Zn0.3Fe2·7O4-10% unveiled excellent visible light photo-Fenton degradation of 92% for CIP at 140 min. The hydroxyl radicals (OH.) served as the predominant radical species on the photodegradation of CIP, which was confirmed by performing a radical scavenging test. Furthermore, the degradation efficiency was determined by six consecutive cycle tests, where the nanomaterial exhibited excellent stability with 98.5% reusable efficiency. The degradation of CIP was further scrutinized by GC-MS analysis, where the degraded intermediate products and the possible pathway were elucidated. The degraded product toxicity was determined by ECOSAR program, where the degraded products haven't exhibited any considerable toxic effects. In addition, the genotoxicity of the nanomaterial was determined by treating them with root tips of A. cepa, where it was found to be non-toxic. Here, the prepared g-C3N4-NiCo2O4-Zn0.3Fe2·7O4 nanocomposite (CNZ NCs) shows eco-friendly and excellent photo-Fenton activity for environmental applications.


Asunto(s)
Ciprofloxacina , Cebollas , Catálisis , Ciprofloxacina/toxicidad , Daño del ADN , Luz , Espectroscopía Infrarroja por Transformada de Fourier , Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA