Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
JCI Insight ; 9(4)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385748

RESUMEN

BACKGROUNDWhile the benefits of statin therapy on atherosclerotic cardiovascular disease are clear, patients often experience mild to moderate skeletal myopathic symptoms, the mechanism for which is unknown. This study investigated the potential effect of high-dose atorvastatin therapy on skeletal muscle mitochondrial function and whole-body aerobic capacity in humans.METHODSEight overweight (BMI, 31.9 ± 2.0) but otherwise healthy sedentary adults (4 females, 4 males) were studied before (day 0) and 14, 28, and 56 days after initiating atorvastatin (80 mg/d) therapy.RESULTSMaximal ADP-stimulated respiration, measured in permeabilized fiber bundles from muscle biopsies taken at each time point, declined gradually over the course of atorvastatin treatment, resulting in > 30% loss of skeletal muscle mitochondrial oxidative phosphorylation capacity by day 56. Indices of in vivo muscle oxidative capacity (via near-infrared spectroscopy) decreased by 23% to 45%. In whole muscle homogenates from day 0 biopsies, atorvastatin inhibited complex III activity at midmicromolar concentrations, whereas complex IV activity was inhibited at low nanomolar concentrations.CONCLUSIONThese findings demonstrate that high-dose atorvastatin treatment elicits a striking progressive decline in skeletal muscle mitochondrial respiratory capacity, highlighting the need for longer-term dose-response studies in different patient populations to thoroughly define the effect of statin therapy on skeletal muscle health.FUNDINGNIH R01 AR071263.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Enfermedades Musculares , Masculino , Adulto , Femenino , Humanos , Atorvastatina/farmacología , Atorvastatina/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Mitocondrias , Enfermedades Musculares/metabolismo
2.
Neuroscience ; 468: 53-67, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34107347

RESUMEN

Inflammation plays a key role in the progression and maintenance of chronic pain, which impacts the lives of millions of Americans. Despite growing evidence that chronic pain can be improved by treating underlying inflammation, successful treatments are lacking and pharmaceutical interventions are limited due to drug side effects. Here we are testing whether a 'healthy human' diet (HHD), with or without anti-inflammatory components (HHAID), improves pain-like behaviors in a preclinical model of chronic widespread hypersensitivity induced by neonatal maternal separation (NMS). The HHD and HHAID are isocaloric and macronutrient-matched, have a low glycemic index, and fat content (35 kcal%) that is high in omega-3 fatty acids, while only the HHAID includes a combination of key anti-inflammatory compounds, at clinically relevant doses. Mice on these diets were compared to mice on a control diet with a macronutrient composition commonly used in rodents (20% protein, 70% carbohydrate, 10% fat). Our results demonstrate a benefit of the HHAID on pain-like behaviors in both male and female mice, despite increased caloric intake, adiposity, and weight gain. In female mice, HHAID specifically increased measures of metabolic syndrome and inflammation compared to the HHD and control diet groups. Male mice were susceptible to worsening metabolic measures on both the HHAID and HHD. This work highlights important sexual dimorphic outcomes related to early life stress exposure and dietary interventions, as well as a potential disconnect between improvements in pain-like behaviors and metabolic measures.


Asunto(s)
Ácidos Grasos Omega-3 , Hiperalgesia , Animales , Antiinflamatorios , Dieta , Dieta Alta en Grasa/efectos adversos , Femenino , Hiperalgesia/tratamiento farmacológico , Masculino , Privación Materna , Ratones
3.
Am J Physiol Regul Integr Comp Physiol ; 315(4): R696-R707, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29924632

RESUMEN

Induction of the chaperone heat shock protein 72 (HSP72) through heat treatment (HT), exercise, or overexpression improves glucose tolerance and mitochondrial function in skeletal muscle. Less is known about HSP72 function in the liver where lipid accumulation can result in insulin resistance and nonalcoholic fatty liver disease (NAFLD). The purpose of this study was 1) to determine whether weekly in vivo HT induces hepatic HSP72 and improves glucose tolerance in rats fed a high-fat diet (HFD) and 2) to determine the ability of HSP72 to protect against lipid accumulation and mitochondrial dysfunction in primary hepatocytes. Male Wistar rats were fed an HFD for 15 wk and were given weekly HT (41°C, 20 min) or sham treatments (37°C, 20 min) for the final 7 wk. Glucose tolerance and insulin sensitivity were assessed, along with HSP72 induction and triglyceride storage, in the skeletal muscle and liver. The effect of an acute loss of HSP72 in primary hepatocytes was examined via siRNA. Weekly in vivo HT improved glucose tolerance, elevated muscle and hepatic HSP72 protein content, and reduced muscle triglyceride storage. In primary hepatocytes, mitochondrial morphology was changed, and fatty acid oxidation was reduced in small interfering HSP72 (siHSP72)-treated hepatocytes. Lipid accumulation following palmitate treatment was increased in siHSP72-treated hepatocytes. These data suggest that HT may improve systemic metabolism via induction of hepatic HSP72. Additionally, acute loss of HSP72 in primary hepatocytes impacts mitochondrial health as well as fat oxidation and storage. These findings suggest therapies targeting HSP72 in the liver may prevent NAFLD.


Asunto(s)
Proteínas del Choque Térmico HSP72/metabolismo , Hepatocitos/metabolismo , Hipertermia Inducida , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/terapia , Animales , Glucemia/metabolismo , Células Cultivadas , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Proteínas del Choque Térmico HSP72/genética , Hepatocitos/ultraestructura , Resistencia a la Insulina , Hígado/ultraestructura , Masculino , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/patología , Músculo Esquelético/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Oxidación-Reducción , Ratas Wistar , Transducción de Señal , Regulación hacia Arriba
4.
Neurosci Lett ; 674: 49-53, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29522838

RESUMEN

Aerobic capacity is a strong predictor of mortality. Low capacity runner (LCR) rats exhibit reduced mitochondrial function in peripheral organs. A high fat diet (HFD) can worsen metabolic phenotype in LCR rats. Little is known about metabolic changes in the brains of these rats, however. This study examined protein markers of mitochondrial function and metabolism as a function of aerobic running capacity and an acute HFD in four brain regions: the striatum, hippocampus, hypothalamus, and substantia nigra. After 3 days HFD or chow diets, we measured peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1-α), nuclear respiratory factors 1 (Nrf-1), mitochondrial transcription factor A (TFAM), and phosphorylated (activated) AMP-activated protein kinase (p-AMPK) protein levels in the four brain regions. LCR rats exhibited lower levels of mitochondrial proteins (PGC1-α, Nrf-1, TFAM), and greater p-AMPK, in striatum, but not in the other brain regions. Mitochondrial protein levels were greater in HFD LCR striatum, while p-AMPK was lower in this group. Markers of lower mitochondrial biogenesis and increased metabolic demand were limited to the LCR striatum, which nevertheless maintained the capacity to respond to an acute HFD challenge.


Asunto(s)
Encéfalo/metabolismo , Dieta Alta en Grasa , Metabolismo Energético , Proteínas Mitocondriales/metabolismo , Carrera , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Cuerpo Estriado/metabolismo , Hipocampo/metabolismo , Hipotálamo/metabolismo , Masculino , Ratas , Sustancia Negra/metabolismo
5.
Appl Physiol Nutr Metab ; 40(4): 343-52, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25761734

RESUMEN

Controversy exists as to whether supplementation with the antioxidants vitamin E and vitamin C blocks adaptation to exercise. Exercise is a first-line means to treat obesity and its complications. While diet-induced obesity alters mitochondrial function and induces insulin resistance (IR), no data exist as to whether supplementation with vitamin E and vitamin C modify responses to exercise in pre-existing obesity. We tested the hypothesis that dietary supplementation with vitamin E (0.4 g α-tocopherol acetate/kg) and vitamin C (0.5 g/kg) blocks exercise-induced improvements on IR and mitochondrial content in obese rats maintained on a high-fat (45% fat energy (en)) diet. Diet-induced obese, sedentary rats had a 2-fold higher homeostasis model assessment of insulin resistance and larger insulin area under the curve following glucose tolerances test than rats fed a low-fat (10% fat en) diet. Exercising (12 weeks at 5 times per week in a motorized wheel) of obese rats normalized IR indices, an effect not modified by vitamin E and vitamin C. Vitamin E and vitamin C supplementation with exercise elevated mtDNA content in adipose and skeletal muscle to a greater extent (20%) than exercise alone in a depot-specific manner. On the other hand, vitamin C and vitamin E decreased exercise-induced increases in mitochondrial protein content for complex I (40%) and nicotinamide nucleotide transhydrogenase (35%) in a muscle-dependent manner. These data indicate that vitamin E and vitamin C supplementation in obese rodents does not modify exercise-induced improvements in insulin sensitivity but that changes in mitochondrial biogenesis and mitochondrial protein expression may be modified by antioxidant supplementation.


Asunto(s)
Ácido Ascórbico/farmacología , Resistencia a la Insulina , Proteínas Mitocondriales/metabolismo , NADP Transhidrogenasa AB-Específica/metabolismo , Obesidad/metabolismo , Condicionamiento Físico Animal , Vitamina E/farmacología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Antioxidantes/farmacología , Colesterol/sangre , ADN Mitocondrial/metabolismo , Determinación de Punto Final , Prueba de Tolerancia a la Glucosa , Insulina/sangre , Masculino , Proteínas Mitocondriales/genética , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , NADP Transhidrogenasa AB-Específica/genética , Ratas , Ratas Sprague-Dawley , Triglicéridos/sangre
6.
J Nutr Metab ; 2012: 268680, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-21918718

RESUMEN

Background and Aims. This study examined if exercise and omega-3 fatty acid (n3PUFA) supplementation is an effective treatment for hepatic steatosis in obese, hyperphagic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Methods. Male OLETF rats were divided into 4 groups (n = 8/group): (1) remained sedentary (SED), (2) access to running wheels; (EX) (3) a diet supplemented with 3% of energy from fish oil (n3PUFA-SED); and (4) n3PUFA supplementation plus EX (n3PUFA+EX). The 8 week treatments began at 13 weeks, when hepatic steatosis is present in OLETF-SED rats. Results. EX alone lowered hepatic triglyceride (TAG) while, in contrast, n3PUFAs failed to lower hepatic TAG and blunted the ability of EX to decrease hepatic TAG levels in n3PUFAs+EX. Insulin sensitivity was improved in EX animals, to a lesser extent in n3PUFA+EX rats, and did not differ between n3PUFA-SED and SED rats. Only the EX group displayed higher complete hepatic fatty acid oxidation (FAO) to CO(2) and carnitine palmitoyl transferase-1 activity. EX also lowered hepatic fatty acid synthase protein while both EX and n3PUFA+EX decreased stearoyl CoA desaturase-1 protein. Conclusions. Exercise lowers hepatic steatosis through increased complete hepatic FAO, insulin sensitivity, and reduced expression of de novo fatty acid synthesis proteins while n3PUFAs had no effect.

7.
J Nutr ; 134(11): 2998-3003, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15514265

RESUMEN

This study assessed the effect of oral pinitol supplementation on oral and intravenous glucose tolerances and on skeletal muscle insulin receptor content and phosphorylation in older people. Fifteen people (6 men, 9 women; age 66 +/- 8 y; BMI 27.9 +/- 3.3 kg/m(2); hemoglobin A1c 5.39 +/- 0.46%, mean +/- SD) completed a 7-wk protocol. Subjects were randomly assigned to groups that during wk 2-7 consumed twice daily either a non-nutritive beverage (Placebo group, n = 8) or the same beverage with 1000 mg pinitol dissolved into it (Pinitol group, n = 7, total dose = 2000 mg pinitol/d). Testing was done at wk 1 and wk 7. In the Pinitol group with supplementation, 24-h urinary pinitol excretion increased 17-fold. The fasting concentrations of glucose, insulin, and C-peptide, and the 180-min area under the curve for these compounds, in response to oral (75 g) and intravenous (300 mg/kg) glucose tolerance challenges, were unchanged from wk 1 to wk 7 and were not influenced by pinitol. Also, pinitol did not affect indices of hepatic and whole-body insulin sensitivity from the oral glucose tolerance test and indices of insulin sensitivity, acute insulin response to glucose, and glucose effectiveness from the intravenous glucose tolerance test, estimated using minimal modeling. Pinitol did not differentially affect total insulin receptor content and insulin receptor phosphotyrosine 1158 and insulin receptor phosphotyrosine 1162/1163 activation in vastus lateralis samples taken during an oral-glucose-induced hyperglycemic and hyperinsulinemic state. These data suggest that pinitol supplementation does not influence whole-body insulin-mediated glucose metabolism and muscle insulin receptor content and phosphorylation in nondiabetic, older people.


Asunto(s)
Glucemia/metabolismo , Inositol/análogos & derivados , Inositol/administración & dosificación , Insulina/farmacología , Músculo Esquelético/química , Receptor de Insulina/análisis , Anciano , Glucemia/análisis , Péptido C/sangre , Suplementos Dietéticos , Ayuno , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Inositol/sangre , Inositol/orina , Insulina/sangre , Masculino , Persona de Mediana Edad , Fosforilación , Fosfotirosina/análisis , Placebos , Receptor de Insulina/metabolismo
8.
J Strength Cond Res ; 18(1): 174-9, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14971964

RESUMEN

We examined the effects of liquid carbohydrate (CHO) supplementation on markers of anabolism following high-intensity resistance exercise. Nine resistance-trained men consumed either CHO or placebo (PLC) 10 minutes before and immediately following 2 resistance exercise sessions. Cortisol (CORT), insulin (INS), ammonia (AMM), and glucose (GLU) were measured before, immediately after, and 1.5 and 4 hours after exercise. Urinary nitrogen (NH(+3)) was measured 24 hours before and after exercise. There was a significant difference in INS levels immediately after exercise and 1.5 hours after exercise. No significant differences were observed for CORT, AMM, GLU, or NH(+3)between treatments. Significant within-group differences were found for the PLC group: CORT before compared with immediately after exercise; INS before compared with immediately after exercise and before compared with 1.5 hours after exercise; and AMM before compared with immediately after exercise and before compared with 1.5 hours after exercise. Significant within-group differences were found for the CHO group: CORT immediately after compared with 1.5 hours after exercise and immediately after compared with 4 hours after exercise; INS before compared with 1.5 hours after exercise; and AMM before compared with immediately after exercise. Liquid CHO ingestion leads to a more favorable anabolic environment immediately following a resistance exercise bout; however, our indirect measures of protein degradation were not altered by CHO ingestion.


Asunto(s)
Carbohidratos de la Dieta/uso terapéutico , Suplementos Dietéticos , Ejercicio Físico/fisiología , Músculo Esquelético/fisiología , Biosíntesis de Proteínas , Adulto , Análisis de Varianza , Bebidas , Carbohidratos de la Dieta/farmacocinética , Humanos , Hidrocortisona/sangre , Insulina/sangre , Masculino , Nitrógeno/orina
9.
J Strength Cond Res ; 17(4): 810-6, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14636104

RESUMEN

The purpose of this study was to examine the effects of a combination of effervescent creatine, ribose, and glutamine on muscular strength (MS), muscular endurance (ME) and body composition (BC) in resistance-trained men. Subjects were 28 men (age: 22.3 +/- 1.7 years; weight: 85.8 +/- 12.1 kg; height: 1.8 +/- 0.1 m) who had 2 or more years of resistance-training experience. A double blind, randomized trial was completed involving supplementation or placebo control and a progressive resistance-training program for 8 weeks. Dependent measures were assessed at baseline and after 8 weeks of resistance training. Both groups significantly improved MS and ME while the supplement group significantly increased body weight and fat-free mass. Control decreased body fat and increased fat-free mass. This study demonstrated that the supplement group did not enhance MS, ME, or BC significantly more than control after an 8-week resistance-training program.


Asunto(s)
Composición Corporal/efectos de los fármacos , Creatina/farmacología , Suplementos Dietéticos , Glutamina/farmacología , Músculo Esquelético/efectos de los fármacos , Ribosa/farmacología , Adulto , Análisis de Varianza , Método Doble Ciego , Humanos , Masculino , Resistencia Física/efectos de los fármacos , Levantamiento de Peso/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA