Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38401091

RESUMEN

Objective: To investigate the effects of combining traditional Chinese medicine acupoint sticking with sea salt hot compress on pain relief and promoting physical and mental comfort in infertile women undergoing Hysterosalpingo contrast sonography (HyCoSy). Methods: Infertile women admitted to Zhujiang Hospital of Southern Medical University from October 2021 to December 2022 were selected and 150 of them were selected by random number table method as the main subjects of the study and divided into three groups. The control group received psychological soothing and music therapy. The hot compress group received a sea salt package hot compress at temperatures of 50-65°C in addition to psychological and music soothing. The combined group received an acupoint application of traditional Chinese medicine along with the hot compress and psychological soothing. Pain levels, assessed using the Numeric Rating Scale (NRS), were recorded at different stages of the HyCoSy procedure: cervical dilatation (T0), balloon intubation (T1), contrast medium injection (T2), 10 minutes after examination (T3), 30 minutes after examination (T4), 24 hours after examination (T5), 48 hours after examination (T6), and 1 week after examination (T7).Stacey salpingography adverse reaction grading method: Adverse reactions were evaluated using the grading method for adverse reactions in salpingography designed by Stacey, and adverse reactions were classified into 0 to 4 levels. Stacey grading was used to evaluate pain severity, and adverse reactions of the vagus nerve, anxiety status, and test comfort were also compared among the three groups. Results: Statistically significant differences in NRS scores were observed among the three groups of patients at various stages of the HyCoSy procedure (T0-T5) (P = .001, P = .001, P = .001, P = .001, P = .012,). The combined group showed a higher proportion of grade 1-2 pain (96%) compared to the control group (83%) and the hot compress group (90%), while the proportion of grade 3 pain (4%) was lower than that in the control group (17%) and the hot compress group (10%) (P < .001). There were no significant differences in anxiety scores before and 1 week after examination (P= .273, P = 1.000, P = .779). The Kolcaba comfort scores were significantly higher in the combined group (67.54±7.58) and the hot compress group (65.02±8.12) compared to the control group (58.96±7.53) (P < .001,). No complications, scalds, or severe skin allergies were reported in any of the three groups during the one-week follow-up. Conclusions: The combination of acupoint application with hot compress during HyCoSy resulted in reduced pain levels and improved physical and mental comfort in infertile women. This simple and safe approach can be effectively utilized in clinical practice to enhance the patient experience during the procedure.

2.
Clin Transl Sci ; 16(10): 1779-1790, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37639334

RESUMEN

Green tea is a popular beverage worldwide. The abundant green tea catechin (-)-epigallocatechin gallate (EGCG) is a potent in vitro inhibitor of intestinal UDP-glucuronosyltransferase (UGT) activity (Ki ~2 µM). Co-consuming green tea with intestinal UGT drug substrates, including raloxifene, could increase systemic drug exposure. The effects of a well-characterized green tea on the pharmacokinetics of raloxifene, raloxifene 4'-glucuronide, and raloxifene 6-glucuronide were evaluated in 16 healthy adults via a three-arm crossover, fixed-sequence study. Raloxifene (60 mg) was administered orally with water (baseline), with green tea for 1 day (acute), and on the fifth day after daily green tea administration for 4 days (chronic). Unexpectedly, green tea decreased the geometric mean green tea/baseline raloxifene AUC0-96h ratio to ~0.60 after both acute and chronic administration, which is below the predefined no-effect range (0.75-1.33). Lack of change in terminal half-life and glucuronide-to-raloxifene ratios indicated the predominant mechanism was not inhibition of intestinal UGT. One potential mechanism includes inhibition of intestinal transport. Using established transfected cell systems, a green tea extract normalized to EGCG inhibited 10 of 16 transporters tested (IC50 , 0.37-12 µM). Another potential mechanism, interruption by green tea of gut microbe-mediated raloxifene reabsorption, prompted a follow-up exploratory clinical study to evaluate the potential for a green tea-gut microbiota-drug interaction. No clear mechanisms were identified. Overall, results highlight that improvements in current models and methods used to predict UGT-mediated drug interactions are needed. Informing patients about the risk of co-consuming green tea with raloxifene may be considered.


Asunto(s)
Catequina , , Adulto , Humanos , Catequina/farmacología , Interacciones Farmacológicas , Glucurónidos , Clorhidrato de Raloxifeno/farmacología , Té/química , Estudios Cruzados
3.
Front Pediatr ; 11: 1155004, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168807

RESUMEN

Background: Previous studies have reported that the incidence of pediatric inflammatory bowel disease (IBD) is related to vitamin D, but it is still unclear. This study intends to calculate the relationship between pediatric IBD and vitamin D. Methods: A comprehensive literature search from inception to January 2023 was performed in the PubMed, EMBASE, Medline, Web of Science, and Google Scholar databases. Relevant data were extracted as required and used for subsequent calculations. Results: Sixteen papers were included, and there was no significant difference between the average vitamin D level in IBD patients and healthy controls. In addition, the overall pooled results showed that C-reactive protein (CRP) was 2.65 higher before vitamin D supplementation than after supplementation [SMD = 2.65, 95% CI = (2.26, 3.04)]. Moreover, patients with IBD in remission were 0.72 higher before vitamin D supplementation than after supplementation [OR = 0.72, 95% CI = (0.52, 1.00)]. Conclusion: This study suggested that there was no obvious relationship between pediatric IBD and vitamin D, while vitamin D supplementation can improve disease activity. Therefore, follow-up still needs many prospective studies to confirm the relationship between pediatric IBD and vitamin D.

4.
Plant Cell ; 34(10): 3961-3982, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35766888

RESUMEN

AP-1 and AP-2 adaptor protein (AP) complexes mediate clathrin-dependent trafficking at the trans-Golgi network (TGN) and the plasma membrane, respectively. Whereas AP-1 is required for trafficking to plasma membrane and vacuoles, AP-2 mediates endocytosis. These AP complexes consist of four subunits (adaptins): two large subunits (ß1 and γ for AP-1 and ß2 and α for AP-2), a medium subunit µ, and a small subunit σ. In general, adaptins are unique to each AP complex, with the exception of ß subunits that are shared by AP-1 and AP-2 in some invertebrates. Here, we show that the two putative Arabidopsis thaliana AP1/2ß adaptins co-assemble with both AP-1 and AP-2 subunits and regulate exocytosis and endocytosis in root cells, consistent with their dual localization at the TGN and plasma membrane. Deletion of both ß adaptins is lethal in plants. We identified a critical role of ß adaptins in pollen wall formation and reproduction, involving the regulation of membrane trafficking in the tapetum and pollen germination. In tapetal cells, ß adaptins localize almost exclusively to the TGN and mediate exocytosis of the plasma membrane transporters such as ATP-binding cassette (ABC)G9 and ABCG16. This study highlights the essential role of AP1/2ß adaptins in plants and their specialized roles in specific cell types.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Subunidades beta de Complejo de Proteína Adaptadora/metabolismo , Adenosina Trifosfato/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clatrina/genética , Clatrina/metabolismo , Exocitosis/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Polen/genética , Polen/metabolismo , Factor de Transcripción AP-1/metabolismo
5.
New Phytol ; 235(2): 472-487, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35451504

RESUMEN

Primexine deposition is essential for the formation of pollen wall patterns and is precisely regulated by the tapetum and microspores. While tapetum- and/or microspore-localized proteins are required for primexine biosynthesis, how their trafficking is established and controlled is poorly understood. In Arabidopsis thaliana, AP1σ1 and AP1σ2, two genes encoding the σ subunit of the trans-Golgi network/early endosome (TGN/EE)-localized ADAPTOR PROTEIN-1 complex (AP-1), are partially redundant for plant viability, and the loss of AP1σ1 function reduces male fertility due to defective primexine formation. Here, we investigated the role of AP-1 in pollen wall formation. The deposition of Acyl-CoA SYNTHETASE5 (ACOS5) and type III LIPID TRANSFER PROTEINs (LTPs) secreted from the anther tapetum, which are involved in exine formation, were impaired in ap1σ1 mutants. In addition, the microspore plasma membrane (PM) protein RUPTURED POLLEN GRAIN1 (RPG1), which regulates primexine deposition, accumulated abnormally at the TGN/EE in ap1σ1 mutants. We show that AP-1µ recognizes the YXXΦ motif of RPG1, thereby regulating its PM abundance through endocytic trafficking, and that loss of AP1σ1 decreases the levels of other AP-1 subunits at the TGN/EE. Our observations show that AP-1-mediated post-Golgi trafficking plays a vital role in pollen wall development by regulating protein transport in tapetal cells and microspores.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Polen/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo
6.
Chin J Nat Med ; 19(12): 881-899, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34961587

RESUMEN

The current study was designed to explore the brain protection mechanism of Xinglou Chengqi Decoction (XCD) based on gut microbiota analysis and network pharmacology. A transient middle cerebral artery occlusion (MCAO) model of mice was established, followed by behavioral evaluation, TTC and TUNEL staining. Additionally, to investigate the effects of gut microbiota on neurological function after stroke, C57BL/6 mice were treated with anti-biotic cocktails 14 days prior to ischemic stroke (IS) to deplete the gut microbiota. High-throughput 16S rDNA gene sequencing, metabonomics technique, and flow multifactor technology were used to analyze bacterial communities, SCFAs and inflammatory cytokines respectively. Finally, as a supplement, network pharmacology and molecular docking were applied to fully explore the multicomponent-multitarget-multichannel mechanism of XCD in treating IS, implicated in ADME screening, target identification, network analysis, functional annotation, and pathway enrichment analysis. We found that XCD effectively improved neurological function, relieved cerebral infarction and decreased the neuronal apoptosis. Moreover, XCD promoted the release of anti-inflammatory factor like IL-10, while down-regulating pro-inflammatory factors such as TNF-α, IL-17A, and IL-22. Furthermore, XCD significantly increased the levels of short chain fatty acids (SCFAs), especially butyric acid. The mechanism might be related to the regulation of SCFAs-producing bacteria like Verrucomicrobia and Akkermansia, and bacteria that regulate inflammation like Paraprevotella, Roseburia, Streptophyta and Enterococcu. Finally, in the network pharmacological analysis, 51 active compounds in XCD and 44 intersection targets of IS and XCD were selected. As a validation, components in XCD docked well with key targets. It was obviously that biological processes were mainly involved in the regulation of apoptotic process, inflammatory response, response to fatty acid, and regulation of establishment of endothelial barrier in GO enrichment. XCD can improve neurological function in experimental stroke mice, partly due to the regulation of gut microbiota. Besises, XCD has the characteristic of "multi-component, multi-target and multi-channel" in the treatment of IS revealed by network pharmacology and molecular docking.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Accidente Cerebrovascular , Animales , Medicamentos Herbarios Chinos/farmacología , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Farmacología en Red , Accidente Cerebrovascular/tratamiento farmacológico
7.
J Tradit Chin Med ; 41(5): 771-778, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34708636

RESUMEN

OBJECTIVE: To explore the neuroprotective mechanisms of Tongluo Huatan capsule (THC) in a rat model of vascular dementia (VD). METHODS: A rat model of VD was established by repeated clamping of bilateral common carotid arteries with the intraperitoneal injection of sodium nitroprusside solution. VD rats were administered THC, memantine hydrochloride, or distilled water daily for 14 d after operation. Learning and memory abilities were assessed using the step-down passive avoidance test, novel object recognition (NOR) test, and Morris water maze (MWM) test. Pathological changes in the hippocampus were observed through hematoxylin and eosin and Nissl staining. The expression levels of clathrin, RAB5B, and N-methyl-D-aspartic acid receptor 1 (NMDAR1) were measured by immunohistochemistry staining, real-time quantitative polymerase chain reaction and Western blot. RESULTS: Rats in VD group showed impaired learning and memory abilities (step-down passive avoidance, NOR, and MWM) and abnormalities in neuronal morphology (light microscopy) in the hippocampus. The mRNA or protein expression levels of clathrin and RAB5B were decreased, and NMDAR1 was increased in hippocampal tissues (P < 0.05). Administration of THC promoted the learning and memory abilities and the morphological structure of hippocampal neurons in VD rats. Besides, THC enhanced mRNA or protein expression levels of clathrin and RAB5B, and decreased NMDAR1 (P < 0.05). CONCLUSION: THC may improve cognitive functions by regulating the endocytosis of NMDA receptors mediated by clathrin.


Asunto(s)
Demencia Vascular , Animales , Clatrina/genética , Clatrina/metabolismo , Cognición , Demencia Vascular/tratamiento farmacológico , Demencia Vascular/genética , Demencia Vascular/metabolismo , Medicamentos Herbarios Chinos , Endocitosis , Hipocampo/metabolismo , Aprendizaje por Laberinto , N-Metilaspartato/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
8.
Phytother Res ; 35(6): 3286-3297, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33587330

RESUMEN

Silybum marianum (L.) Gaertn. (Asteraceae), commonly known as milk thistle, is a botanical natural product used to self-treat multiple diseases such as Type 2 diabetes mellitus and nonalcoholic steatohepatitis (NASH). An extract from milk thistle seeds (achenes), termed silymarin, is comprised primarily of several flavonolignans. Systemic concentrations of these flavonolignans can influence the potential biologic effects of silymarin and the risk for pharmacokinetic silymarin-drug interactions. The aims of this research were to determine the roles of organic anion transporting polypeptides (OATPs/Oatps) in silymarin flavonolignan disposition and in pharmacokinetic silymarin-drug interactions. The seven major flavonolignans from silymarin were determined to be substrates for OATP1B1, OATP1B3, and OATP2B1. Sprague Dawley rats were fed either a control diet or a NASH-inducing diet and administered pitavastatin (OATP/Oatp probe substrate), followed by silymarin via oral gavage. Decreased protein expression of Oatp1b2 and Oatp1a4 in NASH animals increased flavonolignan area under the plasma concentration-time curve (AUC) and maximum plasma concentration. The combination of silymarin inhibition of Oatps and NASH-associated decrease in Oatp expression caused an additive increase in plasma pitavastatin AUC in the animals. These data indicate that OATPs/Oatps contribute to flavonolignan cellular uptake and mediate the interaction between silymarin and NASH on pitavastatin systemic exposure.


Asunto(s)
Flavonolignanos/metabolismo , Transportadores de Anión Orgánico/metabolismo , Silybum marianum/química , Silimarina/metabolismo , Animales , Antioxidantes/metabolismo , Interacciones Farmacológicas , Flavonoides/metabolismo , Humanos , Masculino , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Quinolinas/farmacocinética , Ratas , Ratas Sprague-Dawley
9.
Clin Pharmacol Ther ; 109(5): 1342-1352, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33174626

RESUMEN

The botanical natural product goldenseal can precipitate clinical drug interactions by inhibiting cytochrome P450 (CYP) 3A and CYP2D6. Besides P-glycoprotein, effects of goldenseal on other clinically relevant transporters remain unknown. Established transporter-expressing cell systems were used to determine the inhibitory effects of a goldenseal extract, standardized to the major alkaloid berberine, on transporter activity. Using recommended basic models, the extract was predicted to inhibit the efflux transporter BCRP and uptake transporters OATP1B1/3. Using a cocktail approach, effects of the goldenseal product on BCRP, OATP1B1/3, OATs, OCTs, MATEs, and CYP3A were next evaluated in 16 healthy volunteers. As expected, goldenseal increased the area under the plasma concentration-time curve (AUC0-inf ) of midazolam (CYP3A; positive control), with a geometric mean ratio (GMR) (90% confidence interval (CI)) of 1.43 (1.35-1.53). However, goldenseal had no effects on the pharmacokinetics of rosuvastatin (BCRP and OATP1B1/3) and furosemide (OAT1/3); decreased metformin (OCT1/2, MATE1/2-K) AUC0-inf (GMR, 0.77 (0.71-0.83)); and had no effect on metformin half-life and renal clearance. Results indicated that goldenseal altered intestinal permeability, transport, and/or other processes involved in metformin absorption, which may have unfavorable effects on glucose control. Inconsistencies between model predictions and pharmacokinetic outcomes prompt further refinement of current basic models to include differential transporter expression in relevant organs and intestinal degradation/metabolism of the precipitant(s). Such refinement should improve in vitro-in vivo prediction accuracy, contributing to a standard approach for studying transporter-mediated natural product-drug interactions.


Asunto(s)
Productos Biológicos/farmacocinética , Evaluación de Medicamentos/métodos , Interacciones de Hierba-Droga , Hydrastis , Adulto , Alcaloides/farmacocinética , Productos Biológicos/química , Estudios Cruzados , Femenino , Furosemida/farmacocinética , Células HEK293 , Humanos , Hydrastis/química , Masculino , Metformina/farmacocinética , Midazolam/farmacocinética , Transportadores de Anión Orgánico/antagonistas & inhibidores , Transportadores de Anión Orgánico/metabolismo , Proteínas de Transporte de Catión Orgánico/antagonistas & inhibidores , Proteínas de Transporte de Catión Orgánico/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacocinética , Rosuvastatina Cálcica/farmacocinética
10.
Drug Metab Dispos ; 48(10): 1018-1027, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32591416

RESUMEN

Botanical and other natural products (NPs) are often coconsumed with prescription medications, presenting a risk for cytochrome P450 (P450)-mediated NP-drug interactions. The NP goldenseal (Hydrastis canadensis) has exhibited antimicrobial activities in vitro attributed to isoquinoline alkaloids contained in the plant, primarily berberine, (-)-ß-hydrastine, and to a lesser extent, hydrastinine. These alkaloids contain methylenedioxyphenyl rings, structural alerts with potential to inactivate P450s through formation of metabolic intermediate complexes. Time-dependent inhibition experiments were conducted to evaluate their ability to inhibit major P450 activities in human liver microsomes by using a cocktail of isozyme-specific substrate probes. Berberine inhibited CYP2D6 (dextromethorphan O-demethylation; K I = 2.7 µM, kinact = 0.065 minute-1) and CYP3A4/5 (midazolam 1'-hydroxylation; K I = 14.8 µM, kinact = 0.019 minute-1); (-)-ß-hydrastine inhibited CYP2C9 (diclofenac 4'-hydroxylation; K I = 49 µM, kinact = 0.036 minute-1), CYP2D6 (K I > 250 µM, kinact > 0.06 minute-1), and CYP3A4/5 (K I = 28 µM, kinact = 0.056 minute-1); and hydrastinine inhibited CYP2D6 (K I = 37 µM, kinact = 0.049 minute-1) activity. Berberine additionally exhibited allosteric effects on midazolam hydroxylation, showing both positive and negative heterotropic cooperativity. Experiments with recombinant isozymes showed that berberine activated midazolam 1'-hydroxylation by CYP3A5, lowering K m(app), but showed mixed inhibition and negative cooperativity toward this reaction when catalyzed by CYP3A4. Berberine inactivated CYP3A4 at a much faster rate than CYP3A5 and was a noncompetitive inhibitor of midazolam 4-hydroxylation by CYP3A4 but a strong mixed inhibitor of the CYP3A5 catalyzed reaction. These complex kinetics should be considered when extrapolating the risk for NP-drug interactions involving goldenseal. SIGNIFICANCE STATEMENT: Robust kinetic parameters were determined for the reversible and time-dependent inhibition of CYP2C9, CYP2D6, and CYP3A4/5 activities in human liver microsomes by major component isoquinoline alkaloids contained in the botanical natural product goldenseal. The alkaloid berberine also exhibited opposing, isozyme-specific allosteric effects on midazolam hydroxylation mediated by recombinant CYP3A4 (inhibition) and CYP3A5 (activation). These data will inform the development of a physiologically based pharmacokinetic model that can be used to predict potential clinically relevant goldenseal-drug interactions.


Asunto(s)
Alcaloides/farmacocinética , Inhibidores Enzimáticos del Citocromo P-450/farmacocinética , Sistema Enzimático del Citocromo P-450/metabolismo , Hydrastis/química , Extractos Vegetales/farmacocinética , Medicamentos bajo Prescripción/farmacocinética , Alcaloides/administración & dosificación , Regulación Alostérica , Proteínas de Arabidopsis , Inhibidores Enzimáticos del Citocromo P-450/administración & dosificación , Evaluación Preclínica de Medicamentos , Interacciones Farmacológicas , Humanos , Concentración 50 Inhibidora , Microsomas Hepáticos , Proteínas Nucleares , Oxidación-Reducción , Extractos Vegetales/administración & dosificación , Medicamentos bajo Prescripción/administración & dosificación
12.
Zhongguo Zhong Yao Za Zhi ; 44(22): 4874-4879, 2019 Nov.
Artículo en Chino | MEDLINE | ID: mdl-31872595

RESUMEN

According to drug design flattening principle and using podophyllotoxin or 4'-demethylepipodophyllotoxin and aldehydes as starting material,a series of podophyllotoxin derivatives containing an imine structure with low toxicity were highly effective synthesized. Nine target compounds were successfully synthesized,and their structures were confirmed by ~1H-NMR,HR-ESI-MS and melting point data analysis. Using etoposide as positive control drug,nine target compounds were screened for cytotoxicity against He La cells in vitro by MTT method. The antitumor activity screening results showed that compound 6 b,6 d,6 e,6 f,6 g,6 i exhibited higher inhibitory rate against He La cells than those of control drug VP-16. It provides some practical reference value for the further development on the structure modification of podophyllotoxin and study on anti-tumor activity.


Asunto(s)
Antineoplásicos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Podofilotoxina/farmacología , Diseño de Fármacos , Relación Estructura-Actividad
13.
Zhongguo Zhong Yao Za Zhi ; 44(12): 2532-2537, 2019 Jun.
Artículo en Chino | MEDLINE | ID: mdl-31359720

RESUMEN

According to drug design flattening principle,a series of novel indole podophyllotoxin derivatives which were introduced different indole substituents in C-4 position on the basis of podophyllotoxin nucleus were synthesized with the starting material podophyllotoxin and 1 H-indole-5-carboxylic acid. Its anti-tumor activity in vitro was tested in order to screen for high-efficiency and low-toxic compounds. Six target compounds were synthesized,and were confirmed by~1 H-NMR,~(13)C-NMR,HR-ESI-MS and melting point determination analysis. All these target compounds were not reported by previous literature. Using etoposide as positive control drug,all the target compounds were screened for cytotoxicity against He La cells,K562 cells and K562/A02 cell in vitro by MTT method. The antitumor activity screening results showed that compounds 4 b,4 e,4 f exhibited higher inhibitory rate against He La cells and K562 cells than those of control drug VP-16. This route has the advantages on simple operation and reasonable design,provides some practical reference value for the further development on the structure modification of podophyllotoxin and study on anti-tumor activity.


Asunto(s)
Antineoplásicos/farmacología , Indoles/farmacología , Podofilotoxina/farmacología , Antineoplásicos/síntesis química , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Indoles/síntesis química , Células K562 , Podofilotoxina/síntesis química , Relación Estructura-Actividad
14.
Medicine (Baltimore) ; 98(24): e16077, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31192970

RESUMEN

RATIONALE: Secondary hyperparathyroidism (SHPT) is often complicated with chronic renal failure. Though the total parathyroidectomy (TPTX) with forearm autotransplantation (FAT) has been commonly used to treatment refractory renal SHPT, the recurrence of SHPT is not infrequent, resulting from hyperplastic autograft, remnant parathyroid tissues, and supernumerary parathyroid gland (SPG). PATIENT CONCERNS: A 67-year-old man undergoing TPTX+FAT 4 years previously for renal SHPT, who received regular hemodialysis with active vitamin D supplements of Rocaltrol treatment postoperatively, was admitted to our hospital with progressively elevated serum intact parathyroid hormone (iPTH) from 176 to 1266 pg/mL for 8 months and bilateral ankle joints pain for 1 month. Tc-sestamibi dual-phase imaging with single positron emission tomography (SPECT)/computed tomography (CT) revealed a nodule in suprasternal fossa, besides a nodule in autografted site, accompanied with intense radioactivity. DIAGNOSIS: Recurrent SHPT was easily diagnosed based on previous medical history, painful joints, increased serum iPTH level and positive findings of Tc-sestamibi imaging. Routine postoperative pathology showed that the nodules were consistent with an adenomatoid hyperplasic autograft and a supernumerary parathyroid adenoma in suprasternal fossa, respectively. INTERVENTIONS: Reoperation for removing nodules in suprasternal fossa and autografted site was performed 1 month later. Then regular hemodialysis 3 times a week with Rocaltrol was continued. OUTCOMES: During 12 months of follow-up, the joints pain improved obviously and the serum iPTH level ranged from 30.1 to 442 pg/mL. LESSONS: Although rare, recurrent renal SHPT may be caused by a coexistence of both hyperfunctional autograft and SPG after TPTX+FAT. The Tc-sestamibi parathyroid imaging with SPECT/CT is helpful to locate the culprits of recurrent renal SHPT before reoperation. To prevent recurrence of renal SHPT, the present initial surgical procedures should be further optimized in patient on permanent hemodialysis.


Asunto(s)
Adenoma/complicaciones , Autoinjertos , Hiperparatiroidismo Secundario/etiología , Enfermedades Renales/complicaciones , Neoplasias de las Paratiroides/complicaciones , Adenoma/diagnóstico por imagen , Adenoma/patología , Adenoma/cirugía , Anciano , Autoinjertos/patología , Antebrazo , Humanos , Hiperparatiroidismo Secundario/diagnóstico por imagen , Hiperparatiroidismo Secundario/patología , Hiperparatiroidismo Secundario/cirugía , Hiperplasia , Enfermedades Renales/diagnóstico por imagen , Enfermedades Renales/patología , Enfermedades Renales/cirugía , Masculino , Neoplasias de las Paratiroides/diagnóstico por imagen , Neoplasias de las Paratiroides/patología , Neoplasias de las Paratiroides/cirugía , Recurrencia , Reoperación
15.
Clin Transl Sci ; 12(1): 39-46, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30387917

RESUMEN

The caffeine metabolic ratio is an established marker for cytochrome P450 (CYP) 1A2 activity. Optimal sample size calculation for clinical pharmacokinetic xenobiotic-caffeine interaction studies requires robust estimates of interindividual and intraindividual variation in this ratio. Compared with interindividual variation, factors contributing to intraindividual variation are less defined. An exploratory analysis involving healthy nonsmoking non-naïve caffeine drinkers (1-3 cups/day; 12 men, 12 women) administered caffeine (160 mg) on five occasions evaluated the effects of CYP1A2 induction status (based on genotype) and other factors on intraindividual variation in CYP1A2 activity. Results were compared with those from previous studies. Regardless of whether a hyperinducer (CYP1A2*1A/*1F or CYP1A2*1F/*1F) or normal metabolizer (CYP1A2*1A/*1A, CYP1A2*1C/*1F, or CYP1A2*1C*1F/*1C*1F), sex, age, oral contraceptive use by women, and smoking status, intraindividual variation was ≤30%. A value of 30% is proposed for optimal design of pharmacokinetic xenobiotic-caffeine interaction studies. Prospective studies are needed for confirmation.


Asunto(s)
Variación Biológica Individual , Cafeína/farmacocinética , Café/metabolismo , Citocromo P-450 CYP1A2/genética , Adolescente , Adulto , Alelos , Cafeína/administración & dosificación , Ensayos Clínicos Fase I como Asunto , Café/química , Citocromo P-450 CYP1A2/metabolismo , Femenino , Interacciones Alimento-Droga , Técnicas de Genotipaje , Voluntarios Sanos , Humanos , Masculino , Polimorfismo Genético , Estudios Prospectivos , Proyectos de Investigación , Adulto Joven
16.
Drug Metab Dispos ; 46(5): 552-560, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29467215

RESUMEN

Green tea (Camellia sinensis) is a popular beverage worldwide, raising concern for adverse interactions when co-consumed with conventional drugs. Like many botanical natural products, green tea contains numerous polyphenolic constituents that undergo extensive glucuronidation. As such, the UDP-glucuronosyltransferases (UGTs), particularly intestinal UGTs, represent potential first-pass targets for green tea-drug interactions. Candidate intestinal UGT inhibitors were identified using a biochemometrics approach, which combines bioassay and chemometric data. Extracts and fractions prepared from four widely consumed teas were screened (20-180 µg/ml) as inhibitors of UGT activity (4-methylumbelliferone glucuronidation) in human intestinal microsomes; all demonstrated concentration-dependent inhibition. A biochemometrics-identified fraction rich in UGT inhibitors from a representative tea was purified further and subjected to second-stage biochemometric analysis. Five catechins were identified as major constituents in the bioactive subfractions and prioritized for further evaluation. Of these catechins, (-)-epicatechin gallate and (-)-epigallocatechin gallate showed concentration-dependent inhibition, with IC50 values (105 and 59 µM, respectively) near or below concentrations measured in a cup (240 ml) of tea (66 and 240 µM, respectively). Using the clinical intestinal UGT substrate raloxifene, the Ki values were ∼1.0 and 2.0 µM, respectively. Using estimated intestinal lumen and enterocyte inhibitor concentrations, a mechanistic static model predicted green tea to increase the raloxifene plasma area under the curve up to 6.1- and 1.3-fold, respectively. Application of this novel approach, which combines biochemometrics with in vitro-in vivo extrapolation, to other natural product-drug combinations will refine these procedures, informing the need for further evaluation via dynamic modeling and clinical testing.


Asunto(s)
Camellia sinensis/química , Glucuronosiltransferasa/antagonistas & inhibidores , Glucuronosiltransferasa/metabolismo , Mucosa Intestinal/metabolismo , Extractos Vegetales/farmacología , Clorhidrato de Raloxifeno/farmacología , Té/química , Bebidas , Catequina/análogos & derivados , Catequina/farmacología , Interacciones Farmacológicas/fisiología , Humanos , Himecromona/farmacología , Intestinos/efectos de los fármacos , Microsomas/efectos de los fármacos , Microsomas/metabolismo
17.
Biomed Res Int ; 2017: 9868694, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28473993

RESUMEN

Salvia miltiorrhiza root (Danshen) is widely used in Asia for its cardiovascular benefits and contains both hydrophilic phenolic acids and lipophilic tanshinones, which are believed to be responsible for its therapeutic efficacy. This review summarized the effects of these bioactive components from S. miltiorrhiza roots on pharmacokinetics of comedicated drugs with mechanic insights regarding alterations of protein binding, enzyme activity, and transporter activity based on the published data stemming from both in vitro and in vivo human studies. In vitro studies indicated that cytochrome P450 (CYP450), carboxylesterase enzyme, catechol-O-methyltransferase, organic anion transporter 1 (OAT1) and OAT3, and P-glycoprotein were the major targets involved in S. miltiorrhiza-drug interactions. Lipophilic tanshinones had much more potent inhibitory effects towards CYPs activities compared to hydrophilic phenolic acids, evidenced by much lower Ki values of the former. Clinical S. miltiorrhiza-drug interaction studies were mainly conducted using CYP1A2 and CYP3A4 probe substrates. In addition, the effects of coexisting components on the pharmacokinetic behaviors of those noted bioactive compounds were also included herein.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Interacciones de Hierba-Droga , Salvia miltiorrhiza/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Carboxilesterasa/genética , Enfermedades Cardiovasculares/patología , Catecol O-Metiltransferasa/genética , Sistema Enzimático del Citocromo P-450/genética , Medicamentos Herbarios Chinos/química , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Proteína 1 de Transporte de Anión Orgánico/genética , Transportadores de Anión Orgánico Sodio-Independiente/genética
18.
Curr Pharm Des ; 23(8): 1142-1152, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27758701

RESUMEN

Cardiovascular disease still remains the primary cause of death worldwide and obesity is becoming recognized as one of the most critical contributing risk factors. The increased prevalence of obesity casts a cloud over the global health and the whole societies and will still be burdened in the future. Therefore, prevention and therapy of obesity is a beneficial strategy for the prevention of chronic cardiovascular disease. Numerous studies have demonstrated that gut microbiota takes part in human health and disease including obesity. Traditional herbs hold great potential to improve people's health and wellness, particularly in the area of chronic inflammatory diseases although the mechanisms of action remain poorly understood. Emerging explorations of gut microbiotaherb interactions provide a potential to revolutionize the way we view herbal therapeutics. This review summarizes the experimental studies performed on animals and humans regarding the gut microbiota-herb interactions targeting obesity. This review also discusses the opportunity of herbs with potent activities but low oral bioavailability conundrum for prevention and therapy for obesity and related cardiovascular disease.


Asunto(s)
Fármacos Antiobesidad/farmacología , Enfermedades Cardiovasculares/complicaciones , Enfermedades Cardiovasculares/prevención & control , Microbioma Gastrointestinal/efectos de los fármacos , Medicina de Hierbas , Medicina Tradicional , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedad Crónica , Humanos , Obesidad/prevención & control , Extractos Vegetales/química
19.
Carbohydr Polym ; 156: 244-252, 2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-27842819

RESUMEN

Adhesive interaction contributes toward tumor metastasis and the transmembrane glycoprotein receptor, integrin has been recognized to mediate the adhesion to extracellular matrix thus upregulating tumor metastasis. In the current study, we evaluated the anti-adhesive mechanisms of a water-soluble polysaccharide (BCP) extracted from Bupleurum chinense. BCP inhibited integrin-mediated adhesion of human melanoma A375 cells to fibronectin but had no effects on nonspecific adhesion to poly-l-lysine. BCP also reduced ß1 integrin ligand affinity for GST-FNIII9-10 proteins. The adhesion-dependent formation of F-actin stress fiber and focal adhesion (FA) was also inhibited by BCP treatment. The inhibition of BCP on integrin-mediated signaling is probably through inhibiting phosphorylation of focal adhesion kinase (FAK) and paxillin. Collectively, our current findings indicated that BCP may be a potential therapy for melanoma metastasis due to its inhibitory effects on integrin function.


Asunto(s)
Bupleurum/química , Adhesión Celular/efectos de los fármacos , Integrina beta1/metabolismo , Extractos Vegetales/farmacología , Polisacáridos/farmacología , Línea Celular Tumoral , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Humanos , Melanoma , Fosforilación/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación , Unión Proteica/efectos de los fármacos
20.
Molecules ; 21(6)2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27240333

RESUMEN

Radix Rehmanniae, Fructus Schisandrae, Radix Bupleuri, and Fructus Gardeniae are often used alongside with clozapine (CLZ) for schizophrenia patients in order to reduce side effects and enhance therapeutic efficacy. However, worse outcomes were observed raising concern about a critical issue, herb-drug interactions, which were rarely reported when antipsychotics were included. This study aims to determine whether the concomitant use of these herbal medicines affects the pharmacokinetic characteristics of CLZ in rat models. Rats were given a single or multiple intraperitoneal injections of 10 mg/kg CLZ, either alone or with individual herbal water extracts administered orally. CLZ and its two inactive metabolites, norclozapine and clozapine N-oxide, were determined by high-performance liquid chromatography/tandem mass spectrometry. In the acute treatment, the formation of both metabolites was reduced, while no significant change was observed in the CLZ pharmacokinetics for any of the herbal extracts. In the chronic treatment, none of the four herbal extracts significantly influenced the pharmacokinetic parameters of CLZ and its metabolites. Renal and liver functions stayed normal after the 11-day combined use of herbal medicines. Overall, the four herbs had limited interaction effect on CLZ pharmacokinetics in the acute and chronic treatment. Herb-drug interaction includes both pharmacokinetic and pharmacodynamic mechanisms. This result gives us a hint that pharmacodynamic herb-drug interaction, instead of pharmacokinetic types, may exist and need further confirmation.


Asunto(s)
Clozapina/farmacocinética , Medicamentos Herbarios Chinos/administración & dosificación , Animales , Clozapina/administración & dosificación , Clozapina/efectos adversos , Interacciones Farmacológicas , Quimioterapia Combinada , Interacciones de Hierba-Droga , Pruebas de Función Renal , Pruebas de Función Hepática , Masculino , Ratas , Esquizofrenia/tratamiento farmacológico , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA