RESUMEN
Camellia oleifera is a medicine food homology plant widely cultivated in the Yangtze River Basin and southern China due to its camellia oil. Camellia oleifera bud and fruit exist simultaneously, and its bud is largely discarded as waste. However, C. oleifera bud has been used in traditional Chinese medicine to treat a variety of ailments. Thus, the purpose of this study was to identify the chemical components of C. oleifera bud ethanol extract (EE) and first evaluate its anticancer effects in non-small cell lung cancer A549 cells. Based on UHPLC-Q-Orbitrap-MS analysis, seventy components were identified. For anticancer activity, C. oleifera bud EE had remarkable cytotoxic effect on non-small cell lung cancer A549 (IC50: 57.53 ± 1.54 µg/mL) and NCI-H1299 (IC50: 131.67 ± 4.32 µg/mL) cells, while showed lower cytotoxicity on non-cancerous MRC-5 (IC50 > 320 µg/mL) and L929 (IC50: 179.84 ± 1.08 µg/mL) cells. It dramatically inhibited the proliferation of A549 cells by inducing cell cycle arrest at the G1 phase. Additionally, it induced apoptosis in A549 cells through a mitochondria-mediated pathway, which decreased mitochondrial membrane potential, upregulated Bax, activated caspase 9 and caspase 3, and resulted in PARP cleavage. Wound healing and transwell invasion assays demonstrated that C. oleifera bud EE inhibited the migration and invasion of A549 cells in a dose-dependent manner. The above findings indicated that C. oleifera bud EE revealed notable anticancer effects by inhibiting proliferation, inducing apoptosis, and suppressing migration and invasion of A549 cells. Hence, C. oleifera bud ethanol extract could serve as a new source of natural anticancer drugs.
RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Hedychium coccineum rhizome is an anti-inflammatory ethnomedicine used to remedy inflammation-related swelling and bronchial asthma. AIM OF THE STUDY: The study aimed to analyze the phytochemical constituents of H. coccineum rhizome essential oil (EO) and evaluate its in vitro and in vivo anti-inflammatory effects and underlying mechanisms. MATERIALS AND METHODS: Phytochemical constituents of H. coccineum rhizome EO were analyzed using GC-FID/MS. In RAW264.7 macrophages induced by LPS, blockade of PGE2, NO, IL-1ß, IL-6, and TNF-α secretion by H. coccineum rhizome EO was measured, and then Western blot, qRT-PCR, and immunofluorescent staining were used to evaluate its underlying mechanisms. Moreover, we used the xylene-induced ear edema model for testing anti-inflammatory potential in vivo and examined auricular swelling as well as tissue and serum contents of IL-1ß, IL-6, and TNF-α. RESULTS: EO's main components were E-nerolidol (40.5%), borneol acetate (24.8%), spathulenol (4.5%), linalool (3.8%), elemol (3.5%), and borneol (3.4%). In RAW264.7 cells stimulated by LPS, EO downregulated the expression of pro-inflammatory enzyme (iNOS and COX-2) genes and proteins, thereby suppressing pro-inflammatory mediators (NO and PGE2) secretion. Simultaneously, it reduced TNF-α, IL-1ß, and IL-6 release by downregulating their mRNA expression. Besides, H. coccineum EO attenuated LPS-stimulated activation of NF-κB (by reducing IκBα phosphorylation and degradation to inhibit NF-κB nuclear translocation) and MAPK (by downregulating JNK, p38, and ERK phosphorylation). In xylene-induced mouse ear edema, EO relieved auricular swelling and lowered serum and tissue levels of TNF-α, IL-1ß, and IL-6. CONCLUSIONS: H. coccineum EO had powerful in vivo and in vitro anti-inflammatory effects by inhibiting MAPK and NF-κB activation. Hence, H. coccineum EO should have great potential for application in the pharmaceutical field as a novel anti-inflammatory agent.
Asunto(s)
Canfanos , Aceites Volátiles , Zingiberaceae , Animales , Ratones , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Rizoma/metabolismo , Aceites Volátiles/efectos adversos , Lipopolisacáridos/farmacología , Xilenos , Antiinflamatorios/efectos adversos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Células RAW 264.7 , Edema/inducido químicamente , Edema/tratamiento farmacológico , Fitoquímicos/uso terapéutico , Zingiberaceae/metabolismoRESUMEN
Alpinia coriandriodora, also known as sweet ginger, is a medicinal and edible plant. A. coriandriodora rhizome is popularly utilized in traditional Chinese medicine and as flavouring spices, but there are few reports on its constituents and bioactivities. This study analyzed the phytochemical components of A. coriandriodora rhizome by GC-MS and UHPLC-Q-Orbitrap-MS and evaluated its antioxidant, antimicrobial, and anti-enzymatic properties. According to the GC-FID/MS data, its rhizome essential oil (EO) consisted mainly of (E)-2-decenal (53.8%), (E)-2-decenyl acetate (24.4%), (Z)-3-dodecenyl acetate (3.5%), and (E)-2-octenal (3.5%). Its water extract (WE) and 70% ethanol extract (EE) showed high total phenolic content (TPC, 52.99-60.49 mg GAEs/g extract) and total flavonoid content (TFC, 260.69-286.42 mg REs/g extract). In addition, the phytochemicals of WE and EE were further characterized using UHPLC-Q-Orbitrap-MS, and a total of sixty-three compounds were identified, including fourteen phenolic components and twenty-three flavonoid compounds. In the antioxidant assay, WE and EE revealed a potent scavenging effect on DPPH (IC50: 6.59 ± 0.88 mg/mL and 17.70 ± 1.15 mg/mL, respectively), surpassing the BHT (IC50: 21.83 ± 0.89 mg/mL). For the antimicrobial activities, EO displayed excellent antibacterial capabilities against Proteus vulgaris, Enterococcus faecalis, Bacillus subtilis, Escherichia coli, and Staphylococcus aureus with DIZ (12.60-22.17 mm), MIC (0.78-1.56 mg/mL), and MBC (3.13 mg/mL) and significantly inhibited Aspergillus flavus growth (MIC = 0.313 mg/mL, MFC = 0.625 mg/mL, respectively). In addition to weak tyrosinase and cholinesterase inhibition, EE and WE had a prominent inhibitory effect against α-glucosidase (IC50: 0.013 ± 0.001 mg/mL and 0.017 ± 0.002 mg/mL), which was significantly higher than acarbose (IC50: 0.22 ± 0.01 mg/mL). Hence, the rhizome of A. coriandriodora has excellent potential for utilization in the pharmaceutical and food fields as a source of bioactive substances.
RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Hedychium flavum, an ornamental, edible, and medicinal plant, is extensively cultivated as a source of aromatic essential oils (EO). Its flower is a traditional Chinese medicine for treating inflammation-related diseases like indigestion, diarrhea, and stomach pain. In particular, H. flavum flower EO has been used in cosmetics and as an aromatic stomachic to treat chronic gastritis in China. AIM OF THE STUDY: This research aimed to analyze H. flavum flower EO's chemical composition and explore its anti-inflammatory activities and related mechanisms in vitro and in vivo. MATERIALS AND METHODS: EO's chemical composition was determined by GC-FID/MS analysis. For in vitro test, the anti-inflammatory activity of EO was demonstrated by measuring the LPS-induced release of NO, PGE2, IL-1ß, TNF-α, and IL-6 in RAW264.7 macrophages, and then its related mechanisms were explored using qRT-PCR, western blot, and immunofluorescent staining analysis. Next, EO's in vivo anti-inflammatory potential was further evaluated using a xylene-induced ear edema model, in which ear swelling and TNF-α, IL-6, and IL-1ß levels in serum and tissue were examined. RESULTS: The main components of EO were ß-pinene (20.2%), α-pinene (9.3%), α-phellandrene (8.3%), 1,8-cineole (7.1%), E-nerolidol (5.4%), limonene (4.4%), borneol (4.1%), and ß-caryophyllene (3.7%). For the anti-inflammatory activities in vitro, EO dramatically reduced the LPS-stimulated NO and PGE2 release by suppressing the mRNA and protein expression of iNOS and COX-2. Meanwhile, it remarkably decreased IL-6, TNF-α, and IL-1ß production by inhibiting their mRNA levels. Related mechanism studies indicated that it not only inhibited IκBα phosphorylation and degradation, leading to blockade of NF-κB nuclear transfer but also suppressed MAPKs (ERK, p38, and JNK) phosphorylation in LPS-stimulated RAW264.7 cells. Further in vivo assay showed that EO ameliorated xylene-induced ear edema in mice and reduced TNF-α, IL-6, and IL-1ß levels in serum and tissue. CONCLUSIONS: H. flavum EO exerted significant anti-inflammatory activity in vivo and in vitro, and its mechanism of action is related to the inhibition of MAPK and NF-κB activation. Thus, H. flavum EO could be considered a novel and promising anti-inflammatory agent and possess high potential for utilization in the pharmaceutical field.
Asunto(s)
Aceites Volátiles , Zingiberaceae , Animales , Ratones , Antiinflamatorios , Dinoprostona/metabolismo , Edema/inducido químicamente , Edema/tratamiento farmacológico , Edema/metabolismo , Flores/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Extractos Vegetales/farmacología , Células RAW 264.7 , ARN Mensajero , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Xilenos , Zingiberaceae/metabolismoRESUMEN
Rhynchanthus beesianus is a medicinal, ornamental, and edible plant, and its essential oil has been used as an aromatic stomachic in China. In this study, the chemical constituents, antibacterial, and anti-inflammatory properties of flower essential oil (F-EO), leaf essential oil (L-EO), and stem essential oil (S-EO) of R. beesianus were investigated for the first time. According to the GC-FID/MS assay, the F-EO was mainly composed of bornyl formate (21.7%), 1,8-cineole (21.6%), borneol (9.7%), methyleugenol (7.7%), ß-myrcene (5.4%), limonene (4.7%), camphene (4.5%), linalool (3.4%), and α-pinene (3.1%). The predominant components of L-EO were bornyl formate (33.9%), borneol (13.2%), 1,8-cineole (12.1%), methyleugenol (8.0%), camphene (7.8%), bornyl acetate (6.2%), and α-pinene (4.3%). The main components of S-EO were borneol (22.5%), 1,8-cineole (21.3%), methyleugenol (14.6%), bornyl formate (11.6%), and bornyl acetate (3.9%). For the bioactivities, the F-EO, L-EO, and S-EO exhibited significant antibacterial property against Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, Proteus vulgaris, Pseudomonas aeruginosa, and Escherichia coli with the inhibition zones (7.28-9.69 mm), MIC (3.13-12.50 mg/mL), and MBC (6.25-12.50 mg/mL). Besides, the F-EO, L-EO, and S-EO significantly inhibited the production of proinflammatory mediator nitric oxide (NO) (93.15-94.72%) and cytokines interleukin-6 (IL-6) (23.99-77.81%) and tumor necrosis factor-α (TNF-α) (17.69-24.93%) in LPS-stimulated RAW264.7 cells at the dose of 128 µg/mL in the absence of cytotoxicity. Hence, the essential oils of R. beesianus flower, leaf, and stem could be used as natural antibacterial and anti-inflammatory agents with a high application potential in the pharmaceutical and cosmetic fields.
Asunto(s)
Antibacterianos , Antiinflamatorios , Aceites Volátiles , Aceites de Plantas , Zingiberaceae/química , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Bacterias/efectos de los fármacos , Citocinas/metabolismo , Ratones , Aceites Volátiles/química , Aceites Volátiles/farmacología , Componentes Aéreos de las Plantas/química , Aceites de Plantas/química , Aceites de Plantas/farmacología , Células RAW 264.7RESUMEN
Hedychium flavum Roxb., a medicinal, edible, and ornamental plant, is widely cultivated throughout China, India, and Southeast Asia. The rhizome from this plant has been used for food flavoring and in traditional Chinese medicine to treat diverse diseases, but the detailed constituents and bioactivities are still limited known. Therefore, phytochemical analysis by GC-MS and UHPLC-Q-Orbitrap-MS, and antioxidant, antibacterial, cytotoxic, and enzyme inhibitory activities tests have been conducted in the current study. Based on the GC-MS results, the essential oil (EO) of rhizome was mainly composed of coronarin E (20.3%), ß-pinene (16.8%), E-nerolidol (11.8%), and linalool (8.5%). Among them, coronarin E was reported in H. flavum EO firstly. Furthermore, the spectrophotometric indicated rhizome had high total phenolic content (TPC, 50.08-57.42 mg GAEs/g extract) and total flavonoid content (TFC, 12.45-21.83 mg REs/g extract), no matter in water extract (WE) or in 70% ethanol extract (EE). UHPLC-Q-Orbitrap-MS was applied to further characterize composition, and 86 compounds were putatively identified from WE and EE, including 13 phenolic components. For the bioactivities, both WE and EE showed remarkable antioxidant activity by DPPH and ABTS tests, being superior to the positive control (butylated hydroxytoluene, BTH). EO revealed significant antibacterial activity against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Proteus vulgaris with DIZ (10.34-24.43 mm), MIC (78.13-312.50 µg/mL), and MBC (156.25-625.00 µg/mL). Moreover, EO exhibited a considerable selectivity to human tumor cell K562 (IC50 = 27.16 µg/mL), and its toxicity was more than 3.5-fold different from that of non-cancerous MRC-5 cell (IC50 = 95.96 µg/mL) and L929 cell (IC50 = 129.91 µg/mL). A series of apoptosis analysis demonstrated that EO induced apoptosis against K562 cells in a dose-dependent manner. In enzyme inhibitory effect assays, WE and EE showed strong α-glucosidase inhibition activity, being superior to the positive control (acarbose). Besides, the EO, WE, and EE didn't show a promising inhibition on tyrosinase (19.30-32.51 mg KAEs/g sample) and exhibited a weak inhibitory effect on cholinesterase. Based on the current results, H. flavum could be considered as a source of bioactive compounds and has high exploitation potential in the cosmetics, food, and pharmaceutical industries.
RESUMEN
Rhynchanthus beesianus W. W. Smith, an edible, medicinal, and ornamental plant, is mainly cultivated in China and Myanmar. The essential oil (EO) from R. beesianus rhizome has been used as an aromatic stomachic in China. The chemical composition and biological activities of EO from R. beesianus rhizome were reported for the first time. Based on gas chromatography with flame ionization or mass selective detection (GC-FID/MS) results, the major constituents of EO were 1,8-cineole (47.6%), borneol (15.0%), methyleugenol (11.2%), and bornyl formate (7.6%). For bioactivities, EO showed a significant antibacterial activity against Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Proteus vulgaris with the diameter of the inhibition zone (DIZ) (8.66-10.56 mm), minimal inhibitory concentration (MIC) (3.13-6.25 mg/mL), and minimal bactericidal concentration (MBC) (6.25-12.5 mg/mL). Moreover, EO (128 µg/mL) significantly inhibited the production of proinflammatory mediators nitric oxide (NO) (92.73 ± 1.50%) and cytokines tumor necrosis factor-α (TNF-α) (20.29 ± 0.17%) and interleukin-6 (IL-6) (61.08 ± 0.13%) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages without any cytotoxic effect. Moreover, EO exhibited significant acetylcholinesterase (AChE) inhibitory activity (the concentration of the sample that affords a 50% inhibition in the assay (IC50) = 1.03 ± 0.18 mg/mL) and moderate α-glucosidase inhibition effect (IC50 = 11.60 ± 0.25 mg/mL). Thus, the EO could be regarded as a bioactive natural product and has a high exploitation potential in the cosmetics and pharmaceutical industries.