Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Nutr Biochem ; 116: 109308, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36868505

RESUMEN

Colorectal cancer (CRC) is one of the most common and deadly cancers worldwide. Grape pomace (GP) is a rich source of bioactive compounds with anti-inflammatory, and anticancer effects. We recently found that dietary GP had protective effects against CRC development in the azoxymethane (AOM)/dextran sulfate sodium (DSS) CRC mouse model through suppression of cell proliferation and modulation of DNA methylation. However, the underlying molecular mechanisms associated with changes in metabolites remain unexamined. This study profiled fecal metabolomic changes in a mouse CRC model in response to GP supplementation using gas chromatography-mass spectrometry (GC-MS) based metabolomic analysis. A total of 29 compounds showed significant changes due to GP supplementation, including bile acids, amino acids, fatty acids, phenols/flavonoids, glycerolipids, carbohydrates, organic acids, and others. The major changes in metabolites of feces include increased deoxycholic acid (DCA) and decreased amino acid content. Dietary GP upregulated the expression of farnesoid X receptor (FXR) downstream genes while decreasing fecal urease activity. DNA repair enzyme MutS Homolog 2 (MSH2) was upregulated by GP supplementation. Consistently, γ-H2AX, as a DNA damage marker, decreased in GP supplemented mice. Moreover, MDM2, a protein in the ataxia telangiectasia mutated (ATM) signaling, was decreased by GP supplementation. These data provided valuable metabolic clues for unraveling the protective effects of GP supplementation against CRC development.


Asunto(s)
Neoplasias Colorrectales , Vitis , Ratones , Animales , Vitis/química , Dieta , Suplementos Dietéticos , Metabolómica , Azoximetano/toxicidad , Modelos Animales de Enfermedad , Neoplasias Colorrectales/prevención & control , Neoplasias Colorrectales/metabolismo
2.
Nutrients ; 14(6)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35334805

RESUMEN

The metabolite, alpha-ketoglutarate (aKG), shows promise as an approach for ameliorating colitis, but much remains unknown about the full extent of its effects on the metabolome and mucosal barrier. To further elucidate this matter, C57BL/6 male mice received drinking water with or without 1% aKG for three weeks, then were subjected to 2.5% dextran sulfate sodium (DSS) induction for 7 days followed by 7 days of recovery. Cecal content and intestinal tissue samples were analyzed for changes in metabolite profile and signaling pathways. Gas chromatography-mass spectrometry (GC-MS) metabolomics revealed a separation between the metabolome of mice treated with or without aKG; putrescine and glycine were significantly increased; and ornithine and amide products, oleamide and urea were significantly decreased. Based on a pathway analysis, aKG treatment induced metabolite changes and enriched glutathione metabolism and the urea cycle. Additionally, signaling pathways committing epithelial cells to the secretory lineage were elevated in aKG-treated mice. Consistently, aKG supplementation increased goblet cells staining, mRNA expression of mucin 2, and, trefoil factor 3 and Krüppel-like factor 4, markers of goblet cell differentiation. These data suggest the ameliorating the effects of aKG against chemically induced colitis involves a reduction in harmful metabolites and the promotion of goblet cell differentiation, resulting in a more-fortified mucus layer.


Asunto(s)
Colitis , Células Caliciformes , Animales , Diferenciación Celular , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Células Caliciformes/metabolismo , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Urea/metabolismo
3.
J Nutr Biochem ; 100: 108908, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34801687

RESUMEN

Succinic acid widely exists in foods and is used as a food additive. Succinate not only serves as an energy substrate, but also induces protein succinylation. Histone succinylation activates gene transcription. The brown adipose tissue (BAT) is critical for prevention of obesity and metabolic dysfunction, and the fetal stage is pivotal for BAT development. Up to now, the role of maternal succinate supplementation on fetal BAT development and offspring BAT function remains unexamined. To test, female C57BL/6J mice (2-month-old) were separated into 2 groups, received with or without 0.5% succinic acid in drinking water during gestation and lactation. After weaning, female offspring were challenged with high fat diet (HFD) for 12 weeks. Newborn, female weanling, and HFD female offspring mice were analyzed. For neonatal and weaning mice, the BAT weight relative to the whole body weight was significantly increased in the succinate group. The expression of PGC-1α, a key transcription co-activator promoting mitochondrial biogenesis, was elevated in BAT of female neonatal and offspring born to succinate-fed dams. Consistently, maternal succinate supplementation enhanced thermogenesis and the expression of thermogenic genes in offspring BAT. Additionally, maternal succinate supplementation protected female offspring against HFD-induced obesity. Furthermore, in C3H10T1/2 cells, succinate supplementation promoted PGC-1α expression and brown adipogenesis. Mechanistically, succinate supplementation increased permissive histone succinylation and H3K4me3 modification in the Ppargc1a promoter, which correlated with the higher expression of Ppargc1a. In conclusion, maternal succinate supplementation during pregnancy and lactation enhanced fetal BAT development and offspring BAT thermogenesis, which prevented HFD-induced obesity and metabolism dysfunction in offspring.


Asunto(s)
Adipogénesis , Tejido Adiposo Pardo/embriología , Suplementos Dietéticos , Ácido Succínico/administración & dosificación , Termogénesis , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/fisiología , Animales , Animales Recién Nacidos , Línea Celular , Dieta Alta en Grasa , Femenino , Código de Histonas , Histonas/metabolismo , Lactancia , Ratones , Ratones Endogámicos C57BL , Obesidad/prevención & control , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Embarazo , Regiones Promotoras Genéticas
4.
Mol Nutr Food Res ; 65(7): e2000936, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33547710

RESUMEN

SCOPE: As a natural compound in foods, alpha-ketoglutarate (aKG) is one of the key metabolites maintaining energy homeostasis. This study examines the beneficial effects of dietary aKG against the development of experimental colitis and further explores the underlying molecular mechanisms. METHODS AND RESULTS: Eight-week-old male C57BL/6 mice receive drinking water with or without 1% aKG for 4 weeks. At week 3, colitis is induced by 2.5% dextran sulfate sodium (DSS) for 7 days followed by 7 days recovery. Dietary aKG supplementation decreases DSS-induced body weight loss, gross bleeding, fecal consistency score, and disease activity index. In agreement, aKG supplementation restores DSS-associated colon shortening, ameliorated mucosal damage, and macrophage infiltration into colonic tissue, which are associated with suppressed gut inflammation and Wnt signaling, and improved epithelial structure. Consistently, aKG supplementation enhances M1 to M2 macrophage polarization and strengthens intestinal barrier function. Additionally, aKG supplementation elevates colonic aKG levels while decreasing 2-hydroxyglutarate levels, which increases oxidative instead of glycolytic metabolism. CONCLUSION: aKG supplementation protects against epithelial damage and ameliorates DSS-induced colitis, which are associated with suppressed inflammation, Wnt signaling pathway, and glycolysis. Intake of foods enriched with aKG or aKG supplementation can be an alternative approach for the prevention or treatment of colitis that are common in Western societies.


Asunto(s)
Colitis/prevención & control , Colon/metabolismo , Ácidos Cetoglutáricos/farmacología , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colon/efectos de los fármacos , Colon/fisiopatología , Sulfato de Dextran/toxicidad , Suplementos Dietéticos , Intestinos/efectos de los fármacos , Intestinos/fisiología , Ácidos Cetoglutáricos/sangre , Macrófagos/efectos de los fármacos , Macrófagos/patología , Masculino , Ratones Endogámicos C57BL , Vía de Señalización Wnt/efectos de los fármacos
5.
EBioMedicine ; 60: 103020, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32980698

RESUMEN

BACKGROUND: During muscle regeneration, excessive formation of adipogenic and fibrogenic tissues, from their respective fibro/adipogenic progenitors (FAPs), impairs functional recovery. Intrinsic mechanisms controlling the proliferation and differentiation of FAPs remain largely unexplored. METHODS: Here, we investigated the role of retinoic acid (RA) signalling in regulating FAPs and the subsequent effects on muscle restoration from a cardiotoxin-induced injury. Blockage of retinoic acid receptor (RAR) signalling was achieved through dominant negative retinoic acid receptor α (RARα403) expression specific in PDGFRα+ FAPs in vivo and by BMS493 treatment in vitro. Effects of RAR-signalling on FAP cellularity and muscle regeneration were also investigated in a high-fat diet-induced obese mice model. FINDINGS: Supplementation of RA increased the proliferation of FAPs during the early stages of regeneration while suppressing FAP differentiation and promoting apoptosis during the remodelling stage. Loss of RAR-signalling caused ectopic adipogenic differentiation of FAPs and impaired muscle regeneration. Furthermore, obesity disrupted the cellular transition of FAPs and attenuated muscle regeneration. Supplementation of RA to obese mice not only rescued impaired muscle fibre regeneration, but also inhibited infiltration of fat and fibrotic tissues during muscle repair. These beneficial effects were abolished after blocking RAR-signalling in FAPs of obese mice. INTERPRETATION: These data suggest that RAR-signalling in FAPs is a critical therapeutic target for suppressing differentiation of FAPs and facilitating the regeneration of muscle and other tissues. FUNDING: This study was supported by grants from the National Institutes of Health (R01-HD067449 and R21-AG049976) to M.D.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Músculo Esquelético/fisiología , Regeneración , Transducción de Señal , Tretinoina/metabolismo , Adipogénesis , Animales , Diferenciación Celular , Fibrosis , Inmunohistoquímica , Masculino , Células Madre Mesenquimatosas/citología , Ratones , Ratones Transgénicos , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología
7.
Aging Cell ; 19(1): e13059, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31691468

RESUMEN

Aging usually involves the progressive development of certain illnesses, including diabetes and obesity. Due to incapacity to form new white adipocytes, adipose expansion in aged mice primarily depends on adipocyte hypertrophy, which induces metabolic dysfunction. On the other hand, brown adipose tissue burns fatty acids, preventing ectopic lipid accumulation and metabolic diseases. However, the capacity of brown/beige adipogenesis declines inevitably during the aging process. Previously, we reported that DNA demethylation in the Prdm16 promoter is required for beige adipogenesis. DNA methylation is mediated by ten-eleven family proteins (TET) using alpha-ketoglutarate (AKG) as a cofactor. Here, we demonstrated that the circulatory AKG concentration was reduced in middle-aged mice (10-month-old) compared with young mice (2-month-old). Through AKG administration replenishing the AKG pool, aged mice were associated with the lower body weight gain and fat mass, and improved glucose tolerance after challenged with high-fat diet (HFD). These metabolic changes are accompanied by increased expression of brown adipose genes and proteins in inguinal adipose tissue. Cold-induced brown/beige adipogenesis was impeded in HFD mice, whereas AKG rescued the impairment of beige adipocyte functionality in middle-aged mice. Besides, AKG administration up-regulated Prdm16 expression, which was correlated with an increase of DNA demethylation in the Prdm16 promoter. In summary, AKG supplementation promotes beige adipogenesis and alleviates HFD-induced obesity in middle-aged mice, which is associated with enhanced DNA demethylation of the Prdm16 gene.


Asunto(s)
Adipogénesis/efectos de los fármacos , Ácidos Cetoglutáricos/uso terapéutico , Obesidad/tratamiento farmacológico , Animales , Femenino , Ácidos Cetoglutáricos/farmacología , Ratones , Obesidad/prevención & control
8.
FASEB J ; 31(10): 4612-4622, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28679528

RESUMEN

Clinically, low and moderate alcohol intake improves human health with protection against metabolic syndromes, including type 2 diabetes; however, mechanisms that are associated with these effects remain to be elucidated. The aims of this study were to investigate the effects of moderate alcohol intake on thermogenic brown/beige adipocyte formation and glucose and lipid homeostasis, as well as the involvement of retinoic acid (RA) signaling in the entire process. C57BL6 male mice were supplemented with 8% (w/v) alcohol in water for 1 or 4 mo. Alcohol intake prevented body weight gain, induced the formation of uncoupling protein 1-positive beige adipocytes in white adipose tissue, and increased thermogenesis in mice, which is associated with decreased serum glucose and triacylglycerol levels. Mechanistically, alcohol intake increased RA levels in serum and adipose tissue, which was associated with increased expression of aldehyde dehydrogenase family 1 subfamily A1 (Aldh1a1). When RA receptor-α signaling was conditionally blocked in platelet-derived growth factor receptor-α-positive adipose progenitors, the effects of alcohol on beige adipogenesis were largely abolished. Finally, moderate alcohol prevented high-fat diet-induced obesity and metabolic dysfunction. In conclusion, moderate alcohol intake induces thermogenic brown/beige adipocyte formation and promotes glucose and lipid oxidation via elevation of RA signaling.-Wang, B., Wang, Z., de Avila, J. M., Zhu, M.-J., Zhang, F., Gomez, N. A., Zhao, L., Tian, Q., Zhao, J., Maricelli, J., Zhang, H., Rodgers, B. D., Du, M. Moderate alcohol intake induces thermogenic brown/beige adipocyte formation via elevating retinoic acid signaling.


Asunto(s)
Adipocitos Beige/efectos de los fármacos , Tejido Adiposo Pardo/efectos de los fármacos , Alcoholes/farmacología , Termogénesis/efectos de los fármacos , Adipocitos Beige/metabolismo , Adipogénesis , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Canales Iónicos/metabolismo , Proteínas Mitocondriales/metabolismo , Obesidad/metabolismo , Transducción de Señal/efectos de los fármacos , Tretinoina/metabolismo
9.
Anim Sci J ; 88(8): 1082-1092, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27921350

RESUMEN

To determine the effects of standardized ileal digestible (SID) valine : lysine ratio on the performance, milk composition and plasma indices of lactating sows, 32 Large White × Landrace sows (219.78 ± 7.15 kg body weight; parity 1.82 ± 0.62) were allotted to one of four dietary treatments with eight sows per treatment based on parity, back fat thickness and body weight. The sows were fed corn-soybean meal-based diets containing 63, 83, 103 or 123% SID valine : lysine from day 107 of gestation until day 28 of lactation. The average daily feed intake of sows and daily weight gain of piglets increased linearly (P < 0.05) while back fat loss decreased linearly (P < 0.05) as the SID valine : lysine ratio increased. All of the analyzed amino acids in sow colostrum and valine concentrations of sow and piglet plasma increased linearly (P < 0.05) with the increasing SID valine : lysine ratio. In conclusion, 88 and 113% dietary SID valine : lysine ratios were optimal to achieve minimum back fat loss and maximum piglet growth rate using a linear-break point model which exceeds the requirement of 85% that is estimated by the National Research Council (2012).


Asunto(s)
Alimentación Animal/análisis , Dieta/veterinaria , Lactancia/fisiología , Lisina/análisis , Leche/química , Porcinos/crecimiento & desarrollo , Porcinos/fisiología , Valina/análisis , Animales , Calostro/química , Ingestión de Alimentos , Femenino , Porcinos/sangre , Aumento de Peso
10.
Biol Trace Elem Res ; 168(1): 103-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25860427

RESUMEN

This study was conducted to evaluate the efficacy of a novel Buttiauxella phytase to pigs fed P-deficient, corn-soybean meal diets. One hundred and twenty crossbred piglets (9.53 ± 0.84 kg) were allocated to one of five treatments which consisted of four low P diets (0.61 % Ca and 0.46 % total P) supplemented with 0, 500, 1,000, or 20,000 FTU/kg phytase as well as a positive control diet (0.77 % Ca and 0.62 % total P). Each treatment had six replicated pens with four pigs per pen. Pigs were fed the experimental diets for 28 days. Phytase supplementation linearly improved (P < 0.05) average daily gain (ADG), feed conversion ratio (FCR), and apparent total tract digestibility (ATTD) of dry matter, gross energy, crude protein, Ca, and P in weaned pigs. Super high dosing with phytase (20,000 FTU/kg) further increased (P < 0.05) ADG compared with 500 FTU/kg phytase inclusion group, as well as ATTD of Ca and P. Metacarpal bone characteristics and several trace mineral concentration in bone, plasma, or organ tissues were linearly (P < 0.05) improved at increasing dose of phytase. Super high dosing with phytase (20,000 FTU/kg) supplementation improved (P < 0.05) Mn and Zn concentration in bone compared to normal dose of phytase supplementation (500 or 1,000 FTU/kg). In conclusion, supplementation of 500 FTU of Buttiauxella phytase/kg and above effectively hydrolyzed phytate in a low-P corn-soybean diet for pigs. In addition, a super high dosing with phytase (20,000 FTU/kg) improved macro- or micro mineral availability and growth performance.


Asunto(s)
6-Fitasa/farmacología , Digestión/efectos de los fármacos , Enterobacteriaceae/enzimología , Crecimiento/efectos de los fármacos , Minerales/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Densidad Ósea , Desarrollo Óseo/efectos de los fármacos , Suplementos Dietéticos , Estado Nutricional/efectos de los fármacos , Fósforo/deficiencia , Glycine max , Sus scrofa , Porcinos , Zea mays
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA