Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Ethnopharmacol ; 312: 116449, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37023835

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Jinhongtang as a traditional Chinese medicine (TCM) formula, has been widely used as a clinical adjuvant in the treatment of acute abdominal diseases and sepsis. Clinical benefits of the concurrent use of Jinhongtang and antibiotics have been observed, however, the mechanism has not been fully understood. AIM OF THE STUDY: The present study aimed to explore the effect of Jinhongtang on the antibacterial activity of Imipenem/Cilastatin and to clarify the underlying mechanism of herb-drug interaction (HDI). MATERIALS AND METHODS: A mouse model of sepsis induced by Staphylococcus aureus (S. aureus) was used to evaluate the pharmacodynamic interaction in vivo. In vitro antibacterial activity of Imipenem/Cilastatin was studied by determining minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). Pharmacokinetic interaction was investigated by pharmacokinetic studies in rats and uptake assays using OAT1/3-HEK293 cells. The main constituents ingested into blood of rats were qualitatively identified by UHPLC-Q-TOF-MS. RESULTS: Mice treated by Imipenem/Cilastatin and Jinhongtang exhibited higher survival rate, lower bacteria load and less inflammation in blood and lung tissues, compared with those treated by Imipenem/Cilastatin alone after injection of S. aureus. However, MIC and MBC of Imipenem/Cilastatin against S. aureus in vitro were not significantly changed in the presence of Jinhongtang. On the contrary, Jinhongtang increased the plasma concentration of Imipenem and decreased its urinary excretion in rats. CLr of Imipenem was reduced by 58.5%, while its half-life (t1/2) was prolonged for approximate 1.2 times after coadministered Jinhongtang. Furthermore, the extracts of Jinhongtang, single herb in the prescription, and main absorbable constituents inhibited cellular uptake of probe substrates and Imipenem by OAT1/3-HEK293 cells to different extents. Among them, rhein exhibited the strongest inhibition capacity with IC50 values of 0.08 ± 0.01 µM (OAT1) and 2.86 ± 0.28 µM (OAT3). Moreover, coadministration of rhein also significantly enhanced the antibacterial activity of Imipenem/Cilastatin in sepsis mice. CONCLUSION: Concomitant administration of Jinhongtang enhanced antibacterial activity of Imipenem/Cilastatin in sepsis mice induced by S. aureus through reducing renal elimination of Imipenem via inhibition of OATs. Our investigation provided the insight of Jinhongtang as an effective supplement to enhance the antibacterial activity of Imipenem/Cilastatin and can be useful for future clinical studies.


Asunto(s)
Transportadores de Anión Orgánico , Sepsis , Humanos , Ratas , Animales , Ratones , Interacciones de Hierba-Droga , Cilastatina/farmacocinética , Cilastatina/uso terapéutico , Staphylococcus aureus , Células HEK293 , Combinación Cilastatina e Imipenem/uso terapéutico , Imipenem/farmacocinética , Imipenem/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Sepsis/tratamiento farmacológico , Combinación de Medicamentos
2.
J Ethnopharmacol ; 304: 116016, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36535328

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Jinhongtang, a traditional Chinese medicine (TCM) formula consisting of dry stems of Rheum palmatum L. (Polygonaceae) and Sargentodoxa cuneata (Oliv.) Rehder & E.H.Wilson (Lardizabalaceae) and whole plant of Taraxacum mongolicum Hand.-Mazz. (Asteraceae), is widely used for the treatment of infection diseases including severe sepsis and COVID-19. AIM OF THE STUDY: The present study aimed to explore the compatibility mechanism in the prescription of Jinhongtang based on the pharmacokinetic interaction. MATERIALS AND METHODS: CLP-induced sepsis mice and LPS-induced RAW264.7 cells were used to explore the anti-inflammatory effect of Jinhongtang and herbs in this clinical prescription. Pharmacokinetics of active components in Jinhongtang (Rhein, Emodin and Aloe emodin) was studied in rats. In vitro analysis of metabolic pathways and interactions mediated by metabolic enzymes were conducted using human liver microsomes (HLMs) and recombinant UGT isoforms. RESULTS: Jinhongtang exhibited much more potent anti-inflammatory effect than its single herbs on CLP-induced sepsis mice and LPS-induced RAW264.7 cells. Next, the bioavailability of active ingredients (Rhein, Emodin and Aloe emodin) in R. palmatum was significantly improved through reduced metabolic clearance when co-administered with S. cuneata and T. mongolicum as Jinhongtang during the in vivo pharmacokinetic study, which presented the rational herbal compatibility mechanism. In detailed, the components in S. cuneata and T. mongolicum including Sargentodoxoside A, Chanitracin Ia, Quercetin and Luteolin inhibited the UGT1A9-mediated glucuronidation of active ingredients in R. palmatum, with Ki values of 2.72 µM, 1.25 µM, 2.84 µM and 0.83 µM, respectively. CONCLUSION: T. mongolicum and S. cuneata, the adjuvant herbs of Jinhongtang, could reduce the metabolic clearance of key active components of R. palmatum, prolong their action time and further enhance their anti-inflammatory activity via inhibition of UGTs. Our findings provided deep insight for the rational compatibility of TCMs and useful guidance for the development of TCM formula.


Asunto(s)
COVID-19 , Emodina , Sepsis , Ratas , Ratones , Humanos , Animales , Lipopolisacáridos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Sepsis/tratamiento farmacológico
3.
J Chromatogr Sci ; 61(5): 440-452, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35913259

RESUMEN

Jinhongtang granule (JHT) is a traditional Chinese medicine formula used for treatment of infection diseases including severe COVID-19. However, pharmacokinetics of JHT was unknown, especially in infection condition. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed to simultaneously quantify ten active components form JHT in rat plasma. MS detection was performed by MRM scanning operating in the negative ionization mode. The method showed good linearity (r > 0.997). The accuracy, precision, matrix effect, recovery and stability were all satisfactory with current criterion. The method was successfully applied to compare the pharmacokinetic difference between normal and sepsis rats. The pharmacokinetic behaviors of analytes in sepsis rats were significantly different from those in normal rats. Cmax and AUC of rhein, emodin, aloe emodin, rhein-8-glucoside, aloe emodin 8-glucoside, protocatechuic acid, epicatechin and salidroside, were significantly increased in sepsis rats, except for 4-hydroxycinnamic acid and ferulic acid. In vitro intestinal absorption study using everted intestinal sac preparations indicated that the intestinal permeability was altered under sepsis. In conclusion, pharmacokinetic difference of JHT between normal and sepsis rats were evaluated for the first time, which provided useful information for the clinical application of JHT as an integrative therapy for severe and critical COVID-19.


Asunto(s)
COVID-19 , Medicamentos Herbarios Chinos , Sepsis , Ratas , Animales , Cromatografía Liquida/métodos , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Glucósidos , Sepsis/tratamiento farmacológico , Reproducibilidad de los Resultados
4.
Chin Med ; 17(1): 96, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35974396

RESUMEN

BACKGROUND: Shaoyao Decoction (SYD) is a canonical herbal medicine prescription formulated by Liu Wan-Su in AD 1186. SYD has been widely used to treat inflammatory bowel disease by clearing heat and damp, removing stasis toxin in the intestine; however, the precise mechanisms and therapeutic material basis remain largely unclear. In the present study, we measured the effects of SYD on colitis symptom, epithelial barrier function, epithelial ferroptosis, colonic protein and mRNA expression of glutathione peroxidase 4 (GPX4) in colitis model, and determined whether SYD restored barrier loss in colitis by modulation of GPX4-regulated ferroptosis pathway. METHODS: Colitis was established by infusion with 1 mL 2,4,6-trinitrobenzene sulfonic acid (TNBS) dissolved in ethanol (40% v/v) in rats at a 125 mg/kg dose. Ferroptosis in epithelial cells was determined by flow cytometer. GPX4 promoter-firefly luciferase fusion construct was transfected to Caco-2 cell to determine GPX4 transcription. MS analysis was used to identified ingredients in SYD. RESULTS: Different doses of SYD significantly alleviated colitis, decreased ferroptosis in epithelial cells, knockout of GPX4 significantly reversed SYD-induced alleviation effects on colitis, restoration of epithelial barrier function, and epithelial ferroptosis. Wogonoside, wogonin, palmatine, paeoniflorin and liquiritin were identified as active ingredients of SYD-exerted alleviation effects of colitis based on GPX4 agonistic transcription. CONCLUSION: SYD alleviated chemically induced colitis by activation of GPX4, inhibition of ferroptosis in epithelial cells and further restoration of barrier function. Wogonoside, wogonin, palmatine, paeoniflorin and liquiritin were identified as the key therapeutic material basis of SYD-exerted anti-colitis effects. The findings provide a scientific basis for the therapeutic effect of SYD on colitis.

5.
Food Funct ; 13(18): 9470-9480, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-35983876

RESUMEN

Inhibition of ferroptosis in intestinal epithelial cells ameliorates clinical symptoms and improves endoscopic presentations in inflammatory bowel disease (IBD). Licorice is used worldwide in food and medicine fields. Liquiritin, a flavonoid component in licorice, is an effective substance used as an anti-inflammatory, antioxidant food that has been shown to improve chemically induced colitis. Herein we evaluated the therapeutic effects of liquiritin on colitis and determined whether liquiritin could affect colitis by modulating ferroptosis in epithelial cells. A colitis model was induced in mice by oral administration with 2.5% DSS dissolved in drinking water. The results showed that liquiritin significantly alleviated symptoms, suppressed intestinal inflammation and restored the epithelial barrier function in the colitis mouse model. Liquiritin supplementation upregulated colonic ferritin expression, increased the storage of cellular iron, reduced the cellular iron level and further inhibited ferroptosis in epithelial cells from the colitis model. Pharmacological stimulation of ferroptosis largely blocked liquiritin-induced alleviation of colitis. Peroxiredoxin-6 (Prdx6) expression was significantly decreased in the DSS group, which was reversed by liquiritin treatment. Genetic or pharmacological silencing of Prdx6 largely reversed liquiritin-induced modulation of the ferritin/iron level and ferroptosis in epithelial cells. Molecular docking results showed that liquiritin could bind to Prdx6 through the hydrogen bond interaction with amino acid residues Thr208, Val206 and Pro203. In conclusion, liquiritin treatment largely alleviated DSS induced colitis by inhibiting ferroptosis in epithelial cells. Liquiritin negatively regulated ferroptosis in epithelial cells in colitis by activating Prdx6, increasing the expression of ferritin and subsequently reducing the cellular iron level.


Asunto(s)
Colitis , Ferroptosis , Flavanonas , Peroxiredoxina VI , Aminoácidos/metabolismo , Animales , Antiinflamatorios/metabolismo , Antioxidantes/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/genética , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Ferritinas/metabolismo , Flavanonas/farmacología , Glucósidos/farmacología , Hierro/metabolismo , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Peroxiredoxina VI/metabolismo
6.
Front Pharmacol ; 13: 856784, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295338

RESUMEN

CYP3A4-mediated Phase I biotransformation is the rate-limiting step of elimination for many commonly used clinically agents. The modulatory effects of herbal medicines on CYP3A4 activity are one of the risk factors affecting the safe use of drug and herbal medicine. In the present study, the inhibitory effects of nearly hundred kinds of herbal medicines against CYP3A4 were evaluated based on a visual high-throughput screening method. Furthermore, biflavone components including bilobetin (7-demethylginkgetin, DGK), ginkgetin (GK), isoginkgetin (IGK), and amentoflavone (AMF) were identified as the main inhibitory components of Ginkgo biloba L. (GB) and Selaginella tamariscina (P. Beauv.) Spring (ST), which displayed very strong inhibitory effects toward CYP3A4. The inhibitory effects of these biflavones on clinical drugs that mainly undergo CYP3A4-dependent metabolism were evaluated. The IC 50 of GK toward tamoxifen, gefitinib and ticagrelor were found to be of 0.478 ± 0.003, 0.869 ± 0.001, and 1.61 ± 0.039 µM, respectively. These results suggest the potential pharmacokinetic interactions between the identified biflavones and clinical drugs undergoing CYP3A4-mediated biotransformation. The obtained information is important for guiding the rational use of herbal medicine in combination with synthetic pharmaceuticals.

7.
Fitoterapia ; 158: 105161, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35217118

RESUMEN

Seventeen triterpenoids including four new lanostane triterpenoids (1-3 and 5) were isolated from the fruiting bodies of Ganoderma lucidum by various chromatographic techniques. Their chemical structures were determined by extensive spectroscopic data, including 1D-NMR, 2D-NMR, and HRESIMS. In addition, the spectral data of compound 4 was reported for the first time. In an in vitro bioassay, most isolated triterpenoids could inhibit the hydrolysis activity of fatty acid amide hydrolase (FAAH). Furthermore, there is no cytotoxicity observed for these isolated triterpenoids. Therefore, G. lucidum showed the potential application for anti-neuroinflammation and more FAAH inhibitors may be explored from G. lucidum.


Asunto(s)
Ganoderma , Reishi , Triterpenos , Amidohidrolasas , Cuerpos Fructíferos de los Hongos/química , Ganoderma/química , Estructura Molecular , Reishi/química , Triterpenos/química , Triterpenos/farmacología
8.
Bioorg Chem ; 116: 105356, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34560562

RESUMEN

Two undescribed ent-abietane-type diterpenoid dimers with nonacyclic backbone formed by intermolecular [4 + 2] cycloaddition into a spirocyclic skeleton, bisfischoids A (1) and B (2), along with a known one fischdiabietane A (3), were identified from Euphorbia fischeriana Steud. Their structures were elucidated by extensive spectroscopic analysis, ECD and NMR calculation combined with DP4+ probability analysis, as well as X-ray diffraction. The anti-inflammatory potential of dimers 1-3 were examined using their inhibitory effects on soluble epoxide hydrolase (sEH), which revealed that 1 and 2 exhibited promising activities with inhibition constant (Ki) of 3.20 and 1.95 µM, respectively. Further studies of molecular docking and molecular dynamics indicated that amino acid residue Tyr343 in the catalytic cavity of sEH was the key site for their inhibitory function.


Asunto(s)
Antiinflamatorios/farmacología , Medicamentos Herbarios Chinos/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , Euphorbia/química , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Epóxido Hidrolasas/metabolismo , Humanos , Medicina Tradicional China , Estructura Molecular , Relación Estructura-Actividad
9.
Int J Biol Macromol ; 183: 811-817, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-33957203

RESUMEN

Inhibition of soluble epoxide hydrolase (sEH) is considered to be an effective treatment for inflammation-related diseases, and small molecules origin from natural products show promising activity against sEH. Two undescribed protostanes, 3ß-hydroxy-25-anhydro-alisol F (1) and 3ß-hydroxy-alisol G (2) were isolated from Alisma orientale and identified as new sEH inhibitors with IC50 values of 10.06 and 30.45 µM, respectively. Potential lead compound 1 was determined as an uncompetitive inhibitor against sEH, which had a Ki value of 5.13 µM. In-depth molecular docking and molecular dynamics simulations revealed that amino acid residue Ser374 plays an important role in the inhibition of 1, which also provides an idea for the development of sEH inhibitors based on protostane-type triterpenoids.


Asunto(s)
Alisma/química , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , Triterpenos/farmacología , Inhibidores Enzimáticos/química , Epóxido Hidrolasas/química , Concentración 50 Inhibidora , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Farmacocinética , Extractos Vegetales/química , Extractos Vegetales/farmacología , Conformación Proteica , Triterpenos/química
10.
Am J Chin Med ; 49(2): 315-358, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33622212

RESUMEN

As a genus of the Asteraceae, Inula is widely distributed all over the world, and several of them are being used in traditional medicines. A number of metabolites were isolated from Inula species, and some of these have shown to possess ranges of pharmacological activities. The genus Inula contains abundant sesquiterpenoids, such as eudesmanes, xanthanes, and sesquiterpenoid dimers and trimers. In addition, other types of terpenoids, flavonoids, and lignins also exist in the genus Inula. Since 2010, more than 300 new secondary metabolites, including several known natural products that were isolated for the first time from the genus Inula. Most of them exhibited potential bioactivities in various diseases. The review aimed to summarize the advance of recent researches (2010-2020) on phytochemical constituents, biosynthesis, and pharmacological properties of the genus Inula for providing a scientific basis and supporting its application and exploitation for new drug development.


Asunto(s)
Inula/química , Extractos Vegetales , Desarrollo de Medicamentos , Humanos , Estructura Molecular , Extractos Vegetales/biosíntesis , Extractos Vegetales/química , Extractos Vegetales/farmacología
11.
Phytother Res ; 35(4): 1872-1886, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33184919

RESUMEN

The genus Alisma contains 11 species distributed worldwide, of which at least two species (A. orientale [Sam.] Juzep. and A. plantago-aquatica Linn.) have been used as common herbal medicines. Secondary metabolites obtained from the genus Alisma are considered to be the material basis for the various biological functions and medicinal applications. In this review, we mainly focused on the recent investigations of secondary metabolites from plants of the genus Alisma and their biological activities, with the highlighting on the diversity of the chemical structures, the biosynthesis of interesting secondary metabolites, the biological activities, and the relationships between structures and bioactivities.


Asunto(s)
Alisma/química , Fitoquímicos/uso terapéutico , Plantas Medicinales/química , Humanos
12.
Int J Biol Macromol ; 167: 1262-1272, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33189757

RESUMEN

Carboxylesterase 2 (CES 2), plays a pivotal role in endobiotic homeostasis and xenobiotic metabolism. Protostanes, the major constituents of the genus Alisma, display a series of pharmacological activities. Despite the extensive studies of pharmacological activities, the investigation on inhibitory effects of protostanes against CES 2 is rarely reported. In this study, the inhibitory activities of a library of protostanes (1-25) against human CES 2 were investigated for the first time, using 6,8-dichloro-9,9-dimethyl-7-oxo-7,9-dihydroacridin-2-yl benzoate (DDAB) as the specific fluorescent probe for human CES 2. Compounds 1, 2, 7, 8, 12, 13, 18, 19, and 25 showed strong inhibitory effects towards CES 2. For the most potent compounds 1, 7, 13, and 25, the inhibition kinetics were further investigated, and these four protostanes were all uncompetitive inhibitors against human CES 2 with the inhibition constant (Ki) values ranging from 0.89 µM to 2.83 µM. In addition, molecular docking and molecular dynamics stimulation were employed to analyze the potential interactions between these protostanes and CES 2, and amino acid residue Gln422 was identified to play a crucial role in the strong inhibition of protostanes towards CES 2.


Asunto(s)
Alisma/química , Carboxilesterasa/antagonistas & inhibidores , Extractos Vegetales/química , Extractos Vegetales/farmacología , Triterpenos/química , Triterpenos/farmacología , Acridinas/química , Benzoatos/química , Colorantes Fluorescentes/química , Concentración 50 Inhibidora , Cinética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad
13.
Bioorg Chem ; 104: 104325, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33254425

RESUMEN

Evolides A (1) and B (2) were isolated from the fruits of Evodia rutaecarpa and characterized by various spectroscopic data analyses (NMR, HRESIMS, ECD, and X-ray crystallography) and were thought to be new unusual terpenoids possessing lactone groups. An in vitro bioassay showed that compound 1 exhibited a significant activation effect on the farnesoid X receptor (EC50 0.73 µM).


Asunto(s)
Evodia/química , Frutas/química , Extractos Vegetales/farmacología , Receptores Citoplasmáticos y Nucleares/agonistas , Terpenos/farmacología , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Relación Estructura-Actividad , Terpenos/química , Terpenos/aislamiento & purificación
14.
Fitoterapia ; 147: 104772, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33152463

RESUMEN

The genus Uncaira (Rubiaceae) comprises of 34 species, many of which are usually used as traditional Chinese medicines (TCMs) to treat hypertension, fever, headache, gastrointestinal illness, and fungal infection. Over the past twenty years, Uncaira species have been paid the considerable attentions in phytochemical and biological aspects, and about 100 new secondary metabolites, including alkaloids, triterpenes, and flavonoids, have been elucidated. This review aims to present a comprehensive and up-to date overview of the biological source, structures and their biosynthetic pathways, as well as the pharmacological of the compounds reported in the genus Uncaria for the past two decades. It would provide an insight into the emerging pharmacological applications of the genus Uncaria.


Asunto(s)
Fitoquímicos/farmacología , Uncaria/química , Alcaloides/farmacología , Vías Biosintéticas , Flavonoides/farmacología , Medicina Tradicional China , Estructura Molecular , Metabolismo Secundario , Triterpenos/farmacología
15.
Int J Biol Macromol ; 159: 1022-1030, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32428588

RESUMEN

Cardiovascular diseases, such as hypertension and cardiac failure, have become the most major and global cause for threatening human health in recent years. Uncaria rhynchophylla as a traditional Chinese medicine is widely used to treat hypertension for a long history, whereas its medicinal effective components and potential action mechanism are uncertain. Therefore, twenty-four alkaloids (1-24) isolated from U. rhynchophylla were assayed for their relaxant effects against phenylephrine (Phe)-induced contraction of rat mesenteric arteries. Among them, we surprisingly found that uncarialin A (21) exhibited most potent relaxation effect against Phe-induced contraction (IC50 = 0.18 µM) in the manner of independent on endothelium-derived vasorelaxing factors and endothelium. All the experiments including measurement of Ca2+ in vascular smooth muscle cells (VSMCs) by fluorescence microscopy, whole-cell path clamp, molecular docking, and molecular dynamics, demonstrated that uncarialin A (21) could significantly inhibit L-type calcium channel subunit alpha-1C (Cav1.2) via the hydrogen bond interaction with amino acid residue Met1186, allowing the inhibition of Ca2+ inward current. Our results suggested that uncarialin A (21) could be served as a potential L-type Cav1.2 blocker in the effective treatment of cardiovascular diseases.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Medicamentos Herbarios Chinos/química , Vasodilatadores/farmacología , Alcaloides/análisis , Animales , Sitios de Unión , Células CHO , Bloqueadores de los Canales de Calcio/química , Canales de Calcio Tipo L/química , Células Cultivadas , Cricetinae , Cricetulus , Masculino , Arterias Mesentéricas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/efectos de los fármacos , Unión Proteica , Ratas , Ratas Sprague-Dawley , Uncaria/química , Vasodilatadores/química
16.
Drug Dev Res ; 81(5): 609-619, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32220026

RESUMEN

Scutellarin is the major and active constituent of Dengzhan Xixin Injection (DZXX), a traditional Chinese medicine prepared from the aqueous extract of Erigeron breviscapus and widely used for the treatment of various cerebrovascular diseases in clinic. In present study, the possible pharmacokinetic differences of scutellarin after intravenous administration of scutellarin alone or DZXX were explored. Additional, the potential roles of ß-glucuronidase (GLU) and OATP2B1 in drug-drug interaction (DDI) between scutellarin and constituents of DZXX were further evaluated in vitro. The plasma concentration, urinary and biliary excretion of scutellarin in rats after administration of DZXX, were significantly higher than those received scutellarin, while pharmacokinetic profile of Apigenin 7-O-glucuronide (AG) in rats was similar no matter AG or DZXX group. Furthermore, higher concentration in brain and plasma, however, lower level of scutellarin in intestine were observed after intravenous administration of DZXX. Finally, AG and caffeoylquinic acid esters were found to significantly inhibit GLU and OATP2B1 in vitro, which might explain, at least in part, the pharmacokinetic DDI between scutellarin and other chemical constituents in DZXX. The findings provided deep insight into the prescription-formulating principle in DZXX for treating the cerebrovascular diseases.


Asunto(s)
Apigenina/farmacocinética , Erigeron , Glucuronatos/farmacocinética , Glucuronidasa/metabolismo , Transportadores de Anión Orgánico/metabolismo , Extractos Vegetales/farmacocinética , Animales , Apigenina/sangre , Apigenina/orina , Bilis/química , Composición de Medicamentos , Interacciones Farmacológicas , Endocitosis , Glucuronatos/sangre , Glucuronatos/orina , Glucuronidasa/antagonistas & inhibidores , Células HEK293 , Humanos , Hidrólisis , Inyecciones Intravenosas , Masculino , Transportadores de Anión Orgánico/antagonistas & inhibidores , Ratas Sprague-Dawley , Distribución Tisular
17.
Fitoterapia ; 139: 104367, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31629045

RESUMEN

Ca2+-activated Cl- channels (CaCCs) wildly exist in many tissues which play an important role in ion transport and excitation conduction, especially fluid secretion and smooth muscle contraction in epithelial tissues. TMEM16A as a classic CaCC expresses in the intestine, and has become a potential target of intestinal physiological and pathological researches and therapeutic drug screening. In this study, we identified trans-δ-viniferin (TVN), a resveratrol dimmer, could inhibit TMEM16A activity in TMEM16A expressed FRT cells with IC50 of 19.7 µM, it also prevented Ca2+-activated Cl- current in HT-29 cells with IC50 of 4.65 µM and in colonic mucosa. In the mechanism studies, TVN showed no significant inhibition on CFTR and basal Na+/K+-ATPase in both intestinal epithelial cells and colonic tissues, except for inhibition of calcium concentration and Ca2+-activated K+ channel to some degree. In anti-diarrheal studies, TVN could effectively prevent diarrhea caused by rotavirus infection and reduce the pellet number in IBS-D mice. These physiological effects are at least partially attributed to the inhibitory effect of TVN on CaCC-mediated intestinal fluid secretion and the reduction of smooth muscle contraction force by inhibiting TMEM16A. Collectively, the present study identified a new pharmacological target of TVN which provided the theoretical basis for the application of TVN in the treatment of rotavirus-infected diarrhea and IBS-D.


Asunto(s)
Benzofuranos/farmacología , Canales de Cloruro/antagonistas & inhibidores , Diarrea/tratamiento farmacológico , Células Epiteliales/efectos de los fármacos , Resorcinoles/farmacología , Estilbenos/farmacología , Animales , Calcio/análisis , Diarrea/virología , Motilidad Gastrointestinal/efectos de los fármacos , Células HT29 , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Mucosa Intestinal/citología , Ratones , Ratones Endogámicos C57BL , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Ratas , Rotavirus
18.
Bioorg Chem ; 90: 103101, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31291611

RESUMEN

In this study, forty-nine kinds of traditional Chinese medicines (TCMs) were evaluated for their inhibitory activities against human carboxylesterase 2 (HCE 2) using a human liver microsome (HLM) system. Swertia bimaculata showed significant inhibition on HCE 2 at 10 µg/mL among forty-nine kinds of TCMs. The extract of Swertia bimaculata was separated by preparative HPLC to afford demethylbellidifolin (1) identified by MS, 1H NMR, and 13C NMR spectra. Demethylbellidifolin (1) was assayed for its inhibitory HCE 2 effect by HCE 2-mediated DDAB hydrolysis, and its potential IC50 value was 3.12 ±â€¯0.64 µM. Demethylbellidifolin (1) was assigned as a mixed-type competitive inhibitor with the inhibiton constant Ki value of 6.87 µM by Lineweaver-Burk and slope plots. Living cell imaging was conducted to corroborate its inhibitory HCE 2 activity. Molecular docking indicated potential interactions of demethylbellidifolin (1) with HCE 2 through two hydrogen bonds of the C-3 and C-5 hydroxy groups with amino acid residues Glu227 and Ser228 in the catalytic cavity, respectively.


Asunto(s)
Carboxilesterasa/antagonistas & inhibidores , Microsomas Hepáticos/efectos de los fármacos , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Swertia/química , Xantenos/aislamiento & purificación , Xantenos/farmacología , Carboxilesterasa/metabolismo , Humanos , Hidrólisis , Microsomas Hepáticos/enzimología , Estructura Molecular
19.
Int J Biol Macromol ; 133: 184-189, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-30991064

RESUMEN

As a part of our searching for natural human carboxylesterase 2 (human CES 2) inhibitors from traditional Chinese medicine, we found that the extract of Alisma orientale significantly inhibited human CES 2 in vitro. The investigation on A. orientale led to the isolation of a new protostane-type triterpenoid alismanin I (1). Its structure was determined according to HRESIMS, 1D and 2D NMR spectra. Alismanin I (1) displayed significantly inhibitory activity against human CES 2 with IC50 value of 1.31 ±â€¯0.09 µM assayed by human CES 2-mediated DDAB hydrolysis. According to its inhibition kinetic result, compound 1 was a noncompetitive type inhibitor, and its Ki was 3.65 µM. Its inhibitory effect was confirmed in living cell level through a visual manner. The potential interaction mechanism of compound 1 with human CES 2 was also analyzed by circular dichroism (CD) spectrum and molecular docking.


Asunto(s)
Alisma/química , Carboxilesterasa/antagonistas & inhibidores , Carboxilesterasa/metabolismo , Inhibidores Enzimáticos/farmacología , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Carboxilesterasa/química , Dominio Catalítico , Dicroismo Circular , Inhibidores Enzimáticos/metabolismo , Humanos , Cinética , Extractos Vegetales/metabolismo
20.
Phytomedicine ; 51: 120-127, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30466609

RESUMEN

BACKGROUND: Carboxylesterases (CEs) belong to the serine hydrolase family, and are in charge of hydrolyzing chemicals with carboxylic acid ester and amide functional groups via Ser-His-Glu. Uncaria rhynchophylla (Miq.) Miq. ex Havil. is a famous traditional Chinese medicine used in managing hyperpyrexia, epilepsy, preeclampsia, and hypertension in China. HYPOTHESIS/PURPOSE: To discover the potential natural human carboxylesterase 2 (hCE 2) inhibitors from U. rhynchophylla. METHODS: Compounds were obtained from the hooks of U. rhynchophylla by silica gel and preparative HPLC. Their structures were elucidated by using HRESIMS, 1D and 2D NMR spectra. Their inhibitory activeties and inhibition kinetics against hCE 2 were assayed by the fluorescent probe, and potential mechanisms were also investigated by molecular docking. RESULTS: Twenty-three compounds, including a new phenolic acid uncariarhyine A (1), eight known triterpenoids (2-9), and ten known aromatic derivatives (10, 13-16, and 19-23), were isolated from U. rhynchophylla. Compounds 1-5, 7, 9, and 15 showed significant inhibitory activities against hCE 2 with IC50 values from 4.01  ±â€¯0.61 µM to 18.60 ±â€¯0.21 µM, and their inhibition kinetic analysis results revealed that compounds 1, 5, 9, and 15 were non-competitive; compounds 3 and 4 were mixed-type, and compounds 2 and 7 were uncompetitive. Molecular docking studies indicated inhibition mechanisms of compounds 1-5, 7, 9, and 15 against hCE 2. CONCLUSION: Our present findings highlight potential natural hCE 2 inhibitors from U. rhynchophylla.


Asunto(s)
Carboxilesterasa/antagonistas & inhibidores , Medicamentos Herbarios Chinos/farmacología , Inhibidores Enzimáticos/farmacología , Fitoquímicos/farmacología , Triterpenos/farmacología , Uncaria/química , China , Cromatografía Líquida de Alta Presión , Humanos , Hidroxibenzoatos/aislamiento & purificación , Hidroxibenzoatos/farmacología , Cinética , Simulación del Acoplamiento Molecular , Estructura Molecular , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Extractos Vegetales/farmacología , Triterpenos/química , Triterpenos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA