Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
mBio ; 10(1)2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808694

RESUMEN

Tundra ecosystems are typically carbon (C) rich but nitrogen (N) limited. Since biological N2 fixation is the major source of biologically available N, the soil N2-fixing (i.e., diazotrophic) community serves as an essential N supplier to the tundra ecosystem. Recent climate warming has induced deeper permafrost thaw and adversely affected C sequestration, which is modulated by N availability. Therefore, it is crucial to examine the responses of diazotrophic communities to warming across the depths of tundra soils. Herein, we carried out one of the deepest sequencing efforts of nitrogenase gene (nifH) to investigate how 5 years of experimental winter warming affects Alaskan soil diazotrophic community composition and abundance spanning both the organic and mineral layers. Although soil depth had a stronger influence on diazotrophic community composition than warming, warming significantly (P < 0.05) enhanced diazotrophic abundance by 86.3% and aboveground plant biomass by 25.2%. Diazotrophic composition in the middle and lower organic layers, detected by nifH sequencing and a microarray-based tool (GeoChip), was markedly altered, with an increase of α-diversity. Changes in diazotrophic abundance and composition significantly correlated with soil moisture, soil thaw duration, and plant biomass, as shown by structural equation modeling analyses. Therefore, more abundant diazotrophic communities induced by warming may potentially serve as an important mechanism for supplementing biologically available N in this tundra ecosystem.IMPORTANCE With the likelihood that changes in global climate will adversely affect the soil C reservoir in the northern circumpolar permafrost zone, an understanding of the potential role of diazotrophic communities in enhancing biological N2 fixation, which constrains both plant production and microbial decomposition in tundra soils, is important in elucidating the responses of soil microbial communities to global climate change. A recent study showed that the composition of the diazotrophic community in a tundra soil exhibited no change under a short-term (1.5-year) winter warming experiment. However, it remains crucial to examine whether the lack of diazotrophic community responses to warming is persistent over a longer time period as a possibly important mechanism in stabilizing tundra soil C. Through a detailed characterization of the effects of winter warming on diazotrophic communities, we showed that a long-term (5-year) winter warming substantially enhanced diazotrophic abundance and altered community composition, though soil depth had a stronger influence on diazotrophic community composition than warming. These changes were best explained by changes in soil moisture, soil thaw duration, and plant biomass. These results provide crucial insights into the potential factors that may impact future C and N availability in tundra regions.


Asunto(s)
Biota , Calentamiento Global , Fijación del Nitrógeno , Microbiología del Suelo , Alaska , Metagenómica , Análisis por Micromatrices , Oxidorreductasas/genética , Desarrollo de la Planta , Tundra
2.
Appl Environ Microbiol ; 84(23)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30266729

RESUMEN

Several studies monitoring alterations in the community structure upon resistant starch (RS) interventions are available, although comprehensive function-based analyses are lacking. Recently, a multiomics approach based on 16S rRNA gene sequencing, metaproteomics, and metabolomics on fecal samples from individuals subjected to high and low doses of type 2 RS (RS2; 48 g and 3 g/2,500 kcal, respectively, daily for 2 weeks) in a crossover intervention experiment was performed. In the present study, we did pathway-based metagenomic analyses on samples from a subset of individuals (n = 12) from that study to obtain additional detailed insights into the functional structure at high resolution during RS2 intervention. A mechanistic framework based on obtained results is proposed where primary degradation was governed by Firmicutes, with Ruminococcus bromii as a major taxon involved, providing fermentation substrates and increased acetate concentrations for the growth of various major butyrate producers exhibiting the enzyme butyryl-coenzyme A (CoA):acetate CoA-transferase. H2-scavenging sulfite reducers and acetogens concurrently increased. Individual responses of gut microbiota were noted, where seven of the 12 participants displayed all features of the outlined pattern, whereas four individuals showed mixed behavior and one subject was unresponsive. Intervention order did not affect the outcome, emphasizing a constant substrate supply for maintaining specific functional communities.IMPORTANCE Manipulation of gut microbiota is increasingly recognized as a promising approach to reduce various noncommunicable diseases, such as obesity and type 2 diabetes. Specific dietary supplements, including resistant starches (RS), are often a focus, yet comprehensive insights into functional responses of microbiota are largely lacking. Furthermore, unresponsiveness in certain individuals is poorly understood. Our data indicate that distinct parts of microbiota work jointly to degrade RS and successively form health-promoting fermentation end products. It highlights the need to consider both primary degraders and specific more-downstream-acting bacterial groups in order to achieve desired intervention outcomes. The gained insights will assist the design of personalized treatment strategies based on an individual's microbiota.


Asunto(s)
Bacterias/genética , Bacterias/aislamiento & purificación , Diabetes Mellitus Tipo 2/microbiología , Microbioma Gastrointestinal , Almidón/metabolismo , Adolescente , Bacterias/clasificación , Bacterias/metabolismo , Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/metabolismo , Heces/microbiología , Femenino , Humanos , Masculino , Metagenómica , Filogenia , Almidón/análisis
3.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29453264

RESUMEN

A site in Oak Ridge, TN, USA, has sediments that contain >3% iron oxides and is contaminated with uranium (U). The U(VI) was bioreduced to U(IV) and immobilized in situ through intermittent injections of ethanol. It then was allowed to reoxidize via the invasion of low-pH (3.6 to 4.0), high-nitrate (up to 200 mM) groundwater back into the reduced zone for 1,383 days. To examine the biogeochemical response, high-throughput sequencing and network analysis were applied to characterize bacterial population shifts, as well as cooccurrence and coexclusion patterns among microbial communities. A paired t test indicated no significant changes of α-diversity for the bioactive wells. However, both nonmetric multidimensional scaling and analysis of similarity confirmed a significant distinction in the overall composition of the bacterial communities between the bioreduced and the reoxidized sediments. The top 20 major genera accounted for >70% of the cumulative contribution to the dissimilarity in the bacterial communities before and after the groundwater invasion. Castellaniella had the largest dissimilarity contribution (17.7%). For the bioactive wells, the abundance of the U(VI)-reducing genera Geothrix, Desulfovibrio, Ferribacterium, and Geobacter decreased significantly, whereas the denitrifying Acidovorax abundance increased significantly after groundwater invasion. Additionally, seven genera, i.e., Castellaniella, Ignavibacterium, Simplicispira, Rhizomicrobium, Acidobacteria Gp1, Acidobacteria Gp14, and Acidobacteria Gp23, were significant indicators of bioactive wells in the reoxidation stage. Canonical correspondence analysis indicated that nitrate, manganese, and pH affected mostly the U(VI)-reducing genera and indicator genera. Cooccurrence patterns among microbial taxa suggested the presence of taxa sharing similar ecological niches or mutualism/commensalism/synergism interactions.IMPORTANCE High-throughput sequencing technology in combination with a network analysis approach were used to investigate the stabilization of uranium and the corresponding dynamics of bacterial communities under field conditions with regard to the heterogeneity and complexity of the subsurface over the long term. The study also examined diversity and microbial community composition shift, the common genera, and indicator genera before and after long-term contaminated-groundwater invasion and the relationship between the target functional community structure and environmental factors. Additionally, deciphering cooccurrence and coexclusion patterns among microbial taxa and environmental parameters could help predict potential biotic interactions (cooperation/competition), shared physiologies, or habitat affinities, thus, improving our understanding of ecological niches occupied by certain specific species. These findings offer new insights into compositions of and associations among bacterial communities and serve as a foundation for future bioreduction implementation and monitoring efforts applied to uranium-contaminated sites.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Microbiota , Uranio/efectos adversos , Biodegradación Ambiental , Agua Subterránea/química , Secuenciación de Nucleótidos de Alto Rendimiento , Nitratos/química , Oxidación-Reducción , Tennessee
4.
Appl Microbiol Biotechnol ; 101(19): 7409-7415, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28812142

RESUMEN

Activated carbon (AC) is an increasingly attractive remediation alternative for the sequestration of dioxins at contaminated sites globally. However, the potential for AC to reduce the bioavailability of dioxins in mammals and the residing gut microbiota has received less attention. This question was partially answered in a recent study examining 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced hallmark toxic responses in mice administered with TCDD sequestered by AC or freely available in corn oil by oral gavage. Results from that study support the use of AC to significantly reduce the bioavailability of TCDD to the host. Herein, we examined the bioavailability of TCDD sequestered to AC on a key murine gut commensal and the influence of AC on the community structure of the gut microbiota. The analysis included qPCR to quantify the expression of segmented filamentous bacteria (SFB) in the mouse ileum, which has responded to TCDD-induced host toxicity in previous studies and community structure via sequencing the 16S ribosomal RNA (rRNA) gene. The expression of SFB 16S rRNA gene and functional genes significantly increased with TCDD administered with corn oil vehicle. Such a response was absent when TCDD was sequestered by AC. In addition, AC appeared to have a minimal influence on murine gut community structure and diversity, affecting only the relative abundance of Lactobacillaceae and two other groups. Results of this study further support the remedial use of AC for eliminating bioavailability of TCDD to host and subsequent influence on the gut microbiome.


Asunto(s)
Carbón Orgánico/administración & dosificación , Microbioma Gastrointestinal/efectos de los fármacos , Dibenzodioxinas Policloradas/administración & dosificación , Animales , Disponibilidad Biológica , Carbón Orgánico/farmacocinética , Aceite de Maíz/administración & dosificación , Aceite de Maíz/farmacocinética , Femenino , Íleon/microbiología , Lactobacillaceae/metabolismo , Ratones , Dibenzodioxinas Policloradas/farmacocinética , Dibenzodioxinas Policloradas/toxicidad , ARN Ribosómico 16S/genética , Transcriptoma
5.
Appl Environ Microbiol ; 81(12): 4164-72, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25862231

RESUMEN

A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this study, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using a comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO3 (-), Mn(IV), Fe(III), U(VI), and SO4 (2-) significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO3 (-), Mn(II), Fe(II), U(VI), and SO4 (2-). Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. This study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction.


Asunto(s)
Biodegradación Ambiental , Agua Subterránea/microbiología , Consorcios Microbianos/genética , Consorcios Microbianos/fisiología , Uranio/metabolismo , Contaminantes Radiactivos del Agua/metabolismo , Acetatos/metabolismo , Emulsiones/química , Análisis por Micromatrices , Aceites de Plantas , Sulfatos/metabolismo , Factores de Tiempo
6.
Mol Ecol ; 24(1): 136-50, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25410123

RESUMEN

The influence of long-term chemical fertilization on soil microbial communities has been one of the frontier topics of agricultural and environmental sciences and is critical for linking soil microbial flora with soil functions. In this study, 16S rRNA gene pyrosequencing and a functional gene array, geochip 4.0, were used to investigate the shifts in microbial composition and functional gene structure in paddy soils with different fertilization treatments over a 22-year period. These included a control without fertilizers; chemical nitrogen fertilizer (N); N and phosphate (NP); N and potassium (NK); and N, P and K (NPK). Based on 16S rRNA gene data, both species evenness and key genera were affected by P fertilization. Functional gene array-based analysis revealed that long-term fertilization significantly changed the overall microbial functional structures. Chemical fertilization significantly increased the diversity and abundance of most genes involved in C, N, P and S cycling, especially for the treatments NK and NPK. Significant correlations were found among functional gene structure and abundance, related soil enzymatic activities and rice yield, suggesting that a fertilizer-induced shift in the microbial community may accelerate the nutrient turnover in soil, which in turn influenced rice growth. The effect of N fertilization on soil microbial functional genes was mitigated by the addition of P fertilizer in this P-limited paddy soil, suggesting that balanced chemical fertilization is beneficial to the soil microbial community and its functions.


Asunto(s)
Fertilizantes , Fósforo/química , Microbiología del Suelo , Suelo/química , Bacterias/clasificación , Biomasa , Ciclo del Carbono , Ecosistema , Nitrógeno/química , Ciclo del Nitrógeno , Oryza/crecimiento & desarrollo , Filogenia , Potasio/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
7.
Proc Natl Acad Sci U S A ; 111(9): E836-45, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24550501

RESUMEN

Unraveling the drivers of community structure and succession in response to environmental change is a central goal in ecology. Although the mechanisms shaping community structure have been intensively examined, those controlling ecological succession remain elusive. To understand the relative importance of stochastic and deterministic processes in mediating microbial community succession, a unique framework composed of four different cases was developed for fluidic and nonfluidic ecosystems. The framework was then tested for one fluidic ecosystem: a groundwater system perturbed by adding emulsified vegetable oil (EVO) for uranium immobilization. Our results revealed that groundwater microbial community diverged substantially away from the initial community after EVO amendment and eventually converged to a new community state, which was closely clustered with its initial state. However, their composition and structure were significantly different from each other. Null model analysis indicated that both deterministic and stochastic processes played important roles in controlling the assembly and succession of the groundwater microbial community, but their relative importance was time dependent. Additionally, consistent with the proposed conceptual framework but contradictory to conventional wisdom, the community succession responding to EVO amendment was primarily controlled by stochastic rather than deterministic processes. During the middle phase of the succession, the roles of stochastic processes in controlling community composition increased substantially, ranging from 81.3% to 92.0%. Finally, there are limited successional studies available to support different cases in the conceptual framework, but further well-replicated explicit time-series experiments are needed to understand the relative importance of deterministic and stochastic processes in controlling community succession.


Asunto(s)
Ecosistema , Agua Subterránea/microbiología , Microbiota/genética , Aceites de Plantas/farmacología , Microbiología del Agua , Microbiota/efectos de los fármacos , Modelos Biológicos , Dinámica Poblacional , Especificidad de la Especie , Procesos Estocásticos , Factores de Tiempo
8.
Appl Environ Microbiol ; 77(15): 5352-60, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21642407

RESUMEN

The use of comparative genomics for the study of different microbiological species has increased substantially as sequence technologies become more affordable. However, efforts to fully link a genotype to its phenotype remain limited to the development of one mutant at a time. In this study, we provided a high-throughput alternative to this limiting step by coupling comparative genomics to the use of phenotype arrays for five sequenced Shewanella strains. Positive phenotypes were obtained for 441 nutrients (C, N, P, and S sources), with N-based compounds being the most utilized for all strains. Many genes and pathways predicted by genome analyses were confirmed with the comparative phenotype assay, and three degradation pathways believed to be missing in Shewanella were confirmed as missing. A number of previously unknown gene products were predicted to be parts of pathways or to have a function, expanding the number of gene targets for future genetic analyses. Ecologically, the comparative high-throughput phenotype analysis provided insights into niche specialization among the five different strains. For example, Shewanella amazonensis strain SB2B, isolated from the Amazon River delta, was capable of utilizing 60 C compounds, whereas Shewanella sp. strain W3-18-1, isolated from deep marine sediment, utilized only 25 of them. In spite of the large number of nutrient sources yielding positive results, our study indicated that except for the N sources, they were not sufficiently informative to predict growth phenotypes from increasing evolutionary distances. Our results indicate the importance of phenotypic evaluation for confirming genome predictions. This strategy will accelerate the functional discovery of genes and provide an ecological framework for microbial genome sequencing projects.


Asunto(s)
Ecosistema , Metabolismo Energético/fisiología , Redes y Vías Metabólicas/fisiología , Shewanella/metabolismo , Secuencia de Bases , Carbono/metabolismo , ADN Bacteriano/clasificación , ADN Bacteriano/genética , ADN Ribosómico/clasificación , ADN Ribosómico/genética , Metabolismo Energético/genética , Genómica , Genotipo , Redes y Vías Metabólicas/genética , Nitrógeno/metabolismo , Fenotipo , Fósforo/metabolismo , Filogenia , ARN Ribosómico 16S/clasificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Shewanella/genética , Azufre/metabolismo
9.
Appl Environ Microbiol ; 77(11): 3860-9, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21498771

RESUMEN

A pilot-scale system was established to examine the feasibility of in situ U(VI) immobilization at a highly contaminated aquifer (U.S. DOE Integrated Field Research Challenge site, Oak Ridge, TN). Ethanol was injected intermittently as an electron donor to stimulate microbial U(VI) reduction, and U(VI) concentrations fell to below the Environmental Protection Agency drinking water standard (0.03 mg liter(-1)). Microbial communities from three monitoring wells were examined during active U(VI) reduction and maintenance phases with GeoChip, a high-density, comprehensive functional gene array. The overall microbial community structure exhibited a considerable shift over the remediation phases examined. GeoChip-based analysis revealed that Fe(III)-reducing bacterial (FeRB), nitrate-reducing bacterial (NRB), and sulfate-reducing bacterial (SRB) functional populations reached their highest levels during the active U(VI) reduction phase (days 137 to 370), in which denitrification and Fe(III) and sulfate reduction occurred sequentially. A gradual decrease in these functional populations occurred when reduction reactions stabilized, suggesting that these functional populations could play an important role in both active U(VI) reduction and maintenance of the stability of reduced U(IV). These results suggest that addition of electron donors stimulated the microbial community to create biogeochemical conditions favorable to U(VI) reduction and prevent the reduced U(IV) from reoxidation and that functional FeRB, SRB, and NRB populations within this system played key roles in this process.


Asunto(s)
Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Biodegradación Ambiental , Biodiversidad , Microbiología del Suelo , Contaminantes Radiactivos del Suelo/metabolismo , Uranio/metabolismo , Bacterias/metabolismo , Etanol/metabolismo , Compuestos Férricos/metabolismo , Análisis por Micromatrices , Nitratos/metabolismo , Sulfatos/metabolismo , Estados Unidos
10.
Appl Environ Microbiol ; 76(20): 6778-86, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20729318

RESUMEN

Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 µM and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Biodiversidad , Microbiología Ambiental , Metagenoma , Sulfatos/metabolismo , Uranio/metabolismo , Bacterias/metabolismo , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Datos de Secuencia Molecular , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Contaminantes Radiactivos del Suelo/metabolismo , Tennessee
11.
ISME J ; 4(8): 1060-70, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20237512

RESUMEN

A pilot-scale field test system with an inner loop nested within an outer loop was constructed for in situ U(VI) bioremediation at a US Department of Energy site, Oak Ridge, TN. The outer loop was used for hydrological protection of the inner loop where ethanol was injected for biostimulation of microorganisms for U(VI) reduction/immobilization. After 2 years of biostimulation with ethanol, U(VI) levels were reduced to below drinking water standard (<30 microg l(-1)) in the inner loop monitoring wells. To elucidate the microbial community structure and functions under in situ uranium bioremediation conditions, we used a comprehensive functional gene array (GeoChip) to examine the microbial functional gene composition of the sediment samples collected from both inner and outer loop wells. Our study results showed that distinct microbial communities were established in the inner loop wells. Also, higher microbial functional gene number, diversity and abundance were observed in the inner loop wells than the outer loop wells. In addition, metal-reducing bacteria, such as Desulfovibrio, Geobacter, Anaeromyxobacter and Shewanella, and other bacteria, for example, Rhodopseudomonas and Pseudomonas, are highly abundant in the inner loop wells. Finally, the richness and abundance of microbial functional genes were highly correlated with the mean travel time of groundwater from the inner loop injection well, pH and sulfate concentration in groundwater. These results suggest that the indigenous microbial communities can be successfully stimulated for U bioremediation in the groundwater ecosystem, and their structure and performance can be manipulated or optimized by adjusting geochemical and hydrological conditions.


Asunto(s)
Bacterias/metabolismo , Restauración y Remediación Ambiental/métodos , Uranio/metabolismo , Contaminantes Radiactivos del Agua/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Proyectos Piloto , Microbiología del Agua
12.
Environ Microbiol ; 11(10): 2611-26, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19624708

RESUMEN

A pilot-scale system was established for in situ biostimulation of U(VI) reduction by ethanol addition at the US Department of Energy's (DOE's) Field Research Center (Oak Ridge, TN). After achieving U(VI) reduction, stability of the bioreduced U(IV) was evaluated under conditions of (i) resting (no ethanol injection), (ii) reoxidation by introducing dissolved oxygen (DO), and (iii) reinjection of ethanol. GeoChip, a functional gene array with probes for N, S and C cycling, metal resistance and contaminant degradation genes, was used for monitoring groundwater microbial communities. High diversity of all major functional groups was observed during all experimental phases. The microbial community was extremely responsive to ethanol, showing a substantial change in community structure with increased gene number and diversity after ethanol injections resumed. While gene numbers showed considerable variations, the relative abundance (i.e. percentage of each gene category) of most gene groups changed little. During the reoxidation period, U(VI) increased, suggesting reoxidation of reduced U(IV). However, when introduction of DO was stopped, U(VI) reduction resumed and returned to pre-reoxidation levels. These findings suggest that the community in this system can be stimulated and that the ability to reduce U(VI) can be maintained by the addition of electron donors. This biostimulation approach may potentially offer an effective means for the bioremediation of U(VI)-contaminated sites.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Biodiversidad , Uranio/metabolismo , Microbiología del Agua , Bacterias/genética , Biodegradación Ambiental , ADN Bacteriano/análisis , ADN Bacteriano/genética , Etanol/metabolismo , Genes Bacterianos , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción , Oxígeno/metabolismo , Filogenia , Contaminantes Radiactivos del Agua/metabolismo
13.
BMC Genomics ; 9: 547, 2008 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-19019206

RESUMEN

BACKGROUND: Many microorganisms have a wide temperature growth range and versatility to tolerate large thermal fluctuations in diverse environments, however not many have been fully explored over their entire growth temperature range through a holistic view of its physiology, genome, and transcriptome. We used Exiguobacterium sibiricum strain 255-15, a psychrotrophic bacterium from 3 million year old Siberian permafrost that grows from -5 degrees C to 39 degrees C to study its thermal adaptation. RESULTS: The E. sibiricum genome has one chromosome and two small plasmids with a total of 3,015 protein-encoding genes (CDS), and a GC content of 47.7%. The genome and transcriptome analysis along with the organism's known physiology was used to better understand its thermal adaptation. A total of 27%, 3.2%, and 5.2% of E. sibiricum CDS spotted on the DNA microarray detected differentially expressed genes in cells grown at -2.5 degrees C, 10 degrees C, and 39 degrees C, respectively, when compared to cells grown at 28 degrees C. The hypothetical and unknown genes represented 10.6%, 0.89%, and 2.3% of the CDS differentially expressed when grown at -2.5 degrees C, 10 degrees C, and 39 degrees C versus 28 degrees C, respectively. CONCLUSION: The results show that E. sibiricum is constitutively adapted to cold temperatures stressful to mesophiles since little differential gene expression was observed between 4 degrees C and 28 degrees C, but at the extremities of its Arrhenius growth profile, namely -2.5 degrees C and 39 degrees C, several physiological and metabolic adaptations associated with stress responses were observed.


Asunto(s)
Aclimatación/genética , Frío , Genoma Bacteriano/genética , Bacilos Grampositivos Asporogénicos/genética , Aclimatación/fisiología , Aminoácidos/metabolismo , Metabolismo de los Hidratos de Carbono , Replicación del ADN , Metabolismo Energético , Perfilación de la Expresión Génica , Bacilos Grampositivos Asporogénicos/metabolismo , Bacilos Grampositivos Asporogénicos/ultraestructura , Microscopía Electrónica de Transmisión , Nucleótidos/metabolismo , Siberia , Transcripción Genética
14.
Appl Environ Microbiol ; 74(14): 4516-29, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18515485

RESUMEN

Marine sediments of coastal margins are important sites of carbon sequestration and nitrogen cycling. To determine the metabolic potential and structure of marine sediment microbial communities, two cores were collected each from the two stations (GMT at a depth of 200 m and GMS at 800 m) in the Gulf of Mexico, and six subsamples representing different depths were analyzed from each of these two cores using functional gene arrays containing approximately 2,000 probes targeting genes involved in carbon fixation; organic carbon degradation; contaminant degradation; metal resistance; and nitrogen, sulfur, and phosphorous cycling. The geochemistry was highly variable for the sediments based on both site and depth. A total of 930 (47.1%) probes belonging to various functional gene categories showed significant hybridization with at least 1 of the 12 samples. The overall functional gene diversity of the samples from shallow depths was in general lower than those from deep depths at both stations. Also high microbial heterogeneity existed in these marine sediments. In general, the microbial community structure was more similar when the samples were spatially closer. The number of unique genes at GMT increased with depth, from 1.7% at 0.75 cm to 18.9% at 25 cm. The same trend occurred at GMS, from 1.2% at 0.25 cm to 15.2% at 16 cm. In addition, a broad diversity of geochemically important metabolic functional genes related to carbon degradation, nitrification, denitrification, nitrogen fixation, sulfur reduction, phosphorus utilization, contaminant degradation, and metal resistance were observed, implying that marine sediments could play important roles in biogeochemical cycling of carbon, nitrogen, phosphorus, sulfate, and various metals. Finally, the Mantel test revealed significant positive correlations between various specific functional genes and functional processes, and canonical correspondence analysis suggested that sediment depth, PO(4)(3-), NH(4)(+), Mn(II), porosity, and Si(OH)(4) might play major roles in shaping the microbial community structure in the marine sediments.


Asunto(s)
Bacterias/metabolismo , Variación Genética , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Océano Atlántico , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , Carbono/metabolismo , Análisis por Conglomerados , Genes Bacterianos , Genoma Bacteriano , Nitrógeno/metabolismo , Sondas de Oligonucleótidos , Fósforo/metabolismo , Azufre/metabolismo , Microbiología del Agua
15.
Appl Environ Microbiol ; 74(12): 3718-29, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18456853

RESUMEN

Microbial enumeration, 16S rRNA gene clone libraries, and chemical analysis were used to evaluate the in situ biological reduction and immobilization of uranium(VI) in a long-term experiment (more than 2 years) conducted at a highly uranium-contaminated site (up to 60 mg/liter and 800 mg/kg solids) of the U.S. Department of Energy in Oak Ridge, TN. Bioreduction was achieved by conditioning groundwater above ground and then stimulating growth of denitrifying, Fe(III)-reducing, and sulfate-reducing bacteria in situ through weekly injection of ethanol into the subsurface. After nearly 2 years of intermittent injection of ethanol, aqueous U levels fell below the U.S. Environmental Protection Agency maximum contaminant level for drinking water and groundwater (<30 microg/liter or 0.126 microM). Sediment microbial communities from the treatment zone were compared with those from a control well without biostimulation. Most-probable-number estimations indicated that microorganisms implicated in bioremediation accumulated in the sediments of the treatment zone but were either absent or in very low numbers in an untreated control area. Organisms belonging to genera known to include U(VI) reducers were detected, including Desulfovibrio, Geobacter, Anaeromyxobacter, Desulfosporosinus, and Acidovorax spp. The predominant sulfate-reducing bacterial species were Desulfovibrio spp., while the iron reducers were represented by Ferribacterium spp. and Geothrix spp. Diversity-based clustering revealed differences between treated and untreated zones and also within samples of the treated area. Spatial differences in community structure within the treatment zone were likely related to the hydraulic pathway and to electron donor metabolism during biostimulation.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Biodegradación Ambiental , Biodiversidad , Sedimentos Geológicos/microbiología , Uranio/metabolismo , Bacterias/aislamiento & purificación , Análisis por Conglomerados , Recuento de Colonia Microbiana , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Etanol/metabolismo , Genes de ARNr , Datos de Secuencia Molecular , Filogenia , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico , Estados Unidos
16.
Environ Microbiol ; 5(1): 13-24, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12542709

RESUMEN

Nitrate-contaminated groundwater samples were analysed for nirK and nirS gene diversity. The samples differed with respect to nitrate, uranium, heavy metals, organic carbon content, pH and dissolved oxygen levels. A total of 958 nirK and 1162 nirS clones were screened by restriction fragment length polymorphism (RFLP) analysis: 48 and 143 distinct nirK and nirS clones, respectively, were obtained. A single dominant nirK restriction pattern was observed for all six samples and was 83% identical to the Hyphomicrobium zavarzinii nirK gene. A dominant nirS pattern was observed for four of the samples, including the background sample, and was 95% identical to the nirS of Alcaligenes faecalis. Diversity indices for nirK and nirS sequences were not related to any single geochemical characteristic, but results suggested that the diversity of nirK genes was inversely proportional to the diversity of nirS. Principal component analysis (PCA) of the sites based on geochemistry grouped the samples by low, moderate and high nitrate but PCA of the unique operational taxonomic units (OTUs) distributions grouped the samples differently. Many of the sequences were not closely related to previously observed genes and some phylogenetically related sequences were obtained from similar samples. The results indicated that the contaminated groundwater contained novel nirK and nirS sequences, functional diversity of both genes changed in relation to the contaminant gradient, but the nirK and nirS functional diversity was affected differently.


Asunto(s)
Bacterias/clasificación , Agua Dulce/microbiología , Variación Genética , Nitratos/metabolismo , Nitrito Reductasas/genética , Contaminación Química del Agua , Bacterias/enzimología , Bacterias/genética , Clonación Molecular , Agua Dulce/química , Datos de Secuencia Molecular , Nitrito Reductasas/metabolismo , Filogenia , Polimorfismo de Longitud del Fragmento de Restricción , Análisis de Secuencia de ADN , Uranio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA