Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
mSystems ; 9(2): e0126423, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38259104

RESUMEN

Blooms of gelatinous zooplankton, an important source of protein-rich biomass in coastal waters, often collapse rapidly, releasing large amounts of labile detrital organic matter (OM) into the surrounding water. Although these blooms have the potential to cause major perturbations in the marine ecosystem, their effects on the microbial community and hence on the biogeochemical cycles have yet to be elucidated. We conducted microcosm experiments simulating the scenario experienced by coastal bacterial communities after the decay of a ctenophore (Mnemiopsis leidyi) bloom in the northern Adriatic Sea. Within 24 h, a rapid response of bacterial communities to the M. leidyi OM was observed, characterized by elevated bacterial biomass production and respiration rates. However, compared to our previous microcosm study of jellyfish (Aurelia aurita s.l.), M. leidyi OM degradation was characterized by significantly lower bacterial growth efficiency, meaning that the carbon stored in the OM was mostly respired. Combined metagenomic and metaproteomic analysis indicated that the degradation activity was mainly performed by Pseudoalteromonas, producing a large amount of proteolytic extracellular enzymes and exhibiting high metabolic activity. Interestingly, the reconstructed metagenome-assembled genome (MAG) of Pseudoalteromonas phenolica was almost identical (average nucleotide identity >99%) to the MAG previously reconstructed in our A. aurita microcosm study, despite the fundamental genetic and biochemical differences of the two gelatinous zooplankton species. Taken together, our data suggest that blooms of different gelatinous zooplankton are likely triggering a consistent response from natural bacterial communities, with specific bacterial lineages driving the remineralization of the gelatinous OM.IMPORTANCEJellyfish blooms are increasingly becoming a recurring seasonal event in marine ecosystems, characterized by a rapid build-up of gelatinous biomass that collapses rapidly. Although these blooms have the potential to cause major perturbations, their impact on marine microbial communities is largely unknown. We conducted an incubation experiment simulating a bloom of the ctenophore Mnemiopsis leidyi in the Northern Adriatic, where we investigated the bacterial response to the gelatinous biomass. We found that the bacterial communities actively degraded the gelatinous organic matter, and overall showed a striking similarity to the dynamics previously observed after a simulated bloom of the jellyfish Aurelia aurita s.l. In both cases, we found that a single bacterial species, Pseudoalteromonas phenolica, was responsible for most of the degradation activity. This suggests that blooms of different jellyfish are likely to trigger a consistent response from natural bacterial communities, with specific bacterial species driving the remineralization of gelatinous biomass.


Asunto(s)
Ctenóforos , Microbiota , Pseudoalteromonas , Escifozoos , Animales , Ctenóforos/microbiología , Biomasa , Escifozoos/metabolismo , Zooplancton/metabolismo
2.
Microbiome ; 11(1): 156, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37480075

RESUMEN

BACKGROUND: Jellyfish blooms represent a significant but largely overlooked source of labile organic matter (jelly-OM) in the ocean, characterized by a high protein content. Decaying jellyfish are important carriers for carbon export to the ocean's interior. To accurately incorporate them into biogeochemical models, the interactions between microbes and jelly-OM have yet to be fully characterized. We conducted jelly-OM enrichment experiments in microcosms to simulate the scenario experienced by the coastal pelagic microbiome after the decay of a jellyfish bloom. We combined metagenomics, endo- and exo-metaproteomic approaches to obtain a mechanistic understanding on the metabolic network operated by the jelly-OM degrading bacterial consortium. RESULTS: Our analysis revealed that OM released during the decay of jellyfish blooms triggers a rapid shuffling of the taxonomic and functional profile of the pelagic bacterial community, resulting in a significant enrichment of protein/amino acid catabolism-related enzymes in the jelly-OM degrading community dominated by Pseudoalteromonadaceae, Alteromonadaceae and Vibrionaceae, compared to unamended control treatments. In accordance with the proteinaceous character of jelly-OM, Pseudoalteromonadaceae synthesized and excreted enzymes associated with proteolysis, while Alteromonadaceae contributed to extracellular hydrolysis of complex carbohydrates and organophosphorus compounds. In contrast, Vibrionaceae synthesized transporter proteins for peptides, amino acids and carbohydrates, exhibiting a cheater-type lifestyle, i.e. benefiting from public goods released by others. In the late stage of jelly-OM degradation, Rhodobacteraceae and Alteromonadaceae became dominant, growing on jelly-OM left-overs or bacterial debris, potentially contributing to the accumulation of dissolved organic nitrogen compounds and inorganic nutrients, following the decay of jellyfish blooms. CONCLUSIONS: Our findings indicate that specific chemical and metabolic fingerprints associated with decaying jellyfish blooms are substantially different to those previously associated with decaying phytoplankton blooms, potentially altering the functioning and biogeochemistry of marine systems. We show that decaying jellyfish blooms are associated with the enrichment in extracellular collagenolytic bacterial proteases, which could act as virulence factors in human and marine organisms' disease, with possible implications for marine ecosystem services. Our study also provides novel insights into niche partitioning and metabolic interactions among key jelly-OM degraders operating a complex metabolic network in a temporal cascade of biochemical reactions to degrade pulses of jellyfish-bloom-specific compounds in the water column. Video Abstract.


Asunto(s)
Gammaproteobacteria , Microbiota , Escifozoos , Animales , Organismos Acuáticos , Bacterias/genética , Bacterias/metabolismo , Carbohidratos , Ecosistema , Escifozoos/química , Escifozoos/microbiología
3.
PLoS One ; 14(1): e0198056, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30645606

RESUMEN

Jellyfish are a prominent component of the plankton community. They frequently form conspicuous blooms which may interfere with different human enterprises. Among the aspects that remain understudied are jellyfish associations with microorganisms having potentially important implications for organic matter cycling. To the best of our knowledge, this study is the first to investigate the bacterial community associated with live moon jellyfish (Aurelia solida, Scyohozoa) in the Adriatic Sea. Using 16S rRNA clone libraries and culture-based methods, we have analyzed the bacterial community composition of different body parts: the exumbrella surface, oral arms, and gastric cavity, and investigated possible differences in medusa-associated bacterial community structure at the time of the jellyfish population peak, and during the senescent phase at the end of bloom. Microbiota associated with moon jellyfish was different from ambient seawater bacterial assemblage and varied between different body parts. Betaproteobacteria (Burkholderia, Cupriavidus and Achromobacter) dominated community in the gastral cavity of medusa, while Alphaproteobacteria (Phaeobacter, Ruegeria) and Gammaproteobacteria (Stenotrophomonas, Alteromonas, Pseudoalteromonas and Vibrio) prevailed on 'outer' body parts. Bacterial community structure changed during senescent phase, at the end of the jellyfish bloom, showing an increased abundance of Gammaproteobacteria, exclusively Vibrio. The results of cultured bacterial isolates showed the dominance of Gammaproeteobacteria, especially Vibrio and Pseudoalteromonas in all body parts. Our results suggest that jellyfish associated bacterial community might have an important role for the host, and that anthropogenic pollution in the Gulf of Trieste might affect their community structure.


Asunto(s)
Gammaproteobacteria , Consorcios Microbianos/fisiología , Rhodobacteraceae , Escifozoos/microbiología , Animales , Gammaproteobacteria/clasificación , Gammaproteobacteria/genética , Gammaproteobacteria/aislamiento & purificación , Océanos y Mares , Rhodobacteraceae/clasificación , Rhodobacteraceae/genética , Rhodobacteraceae/aislamiento & purificación
4.
PLoS One ; 7(6): e39274, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22745726

RESUMEN

Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom-forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish-enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to 'jellyfish-associated' and 'free-living' bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into possible changes in bacterial population dynamics and nutrient pathways following jellyfish blooms which have important implications for ecology of coastal waters.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/genética , Escifozoos/microbiología , Alphaproteobacteria/clasificación , Alphaproteobacteria/genética , Alphaproteobacteria/crecimiento & desarrollo , Animales , Bacterias/clasificación , Flavobacterium/clasificación , Flavobacterium/genética , Flavobacterium/crecimiento & desarrollo , Gammaproteobacteria/clasificación , Gammaproteobacteria/genética , Gammaproteobacteria/crecimiento & desarrollo , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Vibrionaceae/clasificación , Vibrionaceae/genética , Vibrionaceae/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA