Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Lipids Health Dis ; 22(1): 4, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635716

RESUMEN

BACKGROUND: There is increasing evidence that dietary fat, especially saturated fat, promotes the translocation of lipopolysaccharide (LPS) via chylomicron production in the gut. Chylomicrons can subsequently transport LPS to other parts of the body, where they can induce low-grade chronic inflammation that is linked to various metabolic and gut-related diseases. To identify promising (food) compounds that can prevent or ameliorate LPS-related low-grade inflammation, we developed and optimized a bicameral in vitro model for dietary fat-induced LPS translocation that closely mimics the in vivo situation and facilitates high-throughput screening. METHODS: Caco-2 cells were cultured in monolayers and differentiated to a small intestinal phenotype in 21 days. Thereafter, optimal conditions for fat-induced chylomicron production were determined by apical exposure of Caco-2 cells to a dilution range of in vitro digested palm oil and sunflower oil, optionally preceded by a 1-week apical FBS deprivation (cultured without apical fetal bovine serum). Chylomicron production was assessed by measuring basolateral levels of the chylomicron-related marker apolipoprotein B. Next, LPS was coincubated at various concentrations with the digested oils, and fat-induced LPS translocation to the basolateral side was assessed. RESULTS: We found that dietary fat-induced LPS translocation in Caco-2 cells was optimal after apical exposure to digested oils at a 1:50 dilution in combination with 750 ng/mL LPS, preceded by 1 week of apical FBS deprivation. Coincubation with the chylomicron blocker Pluronic L81 confirmed that fat-induced LPS translocation is mediated via chylomicron production in this Caco-2 cell model. CONCLUSION: We developed a robust Caco-2 cell model for dietary fat-induced LPS translocation that can be used for high-throughput screening of (food) compounds that can reduce LPS-related low-grade inflammation.


Asunto(s)
Quilomicrones , Grasas de la Dieta , Humanos , Grasas de la Dieta/metabolismo , Lipopolisacáridos/toxicidad , Triglicéridos , Células CACO-2 , Apolipoproteína B-48 , Aceite de Palma , Inflamación/inducido químicamente
2.
Food Chem ; 361: 130047, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34029903

RESUMEN

Inhibition of maltase, sucrase, isomaltase and glucoamylase activity by acarbose, epigallocatechin gallate, epicatechin gallate and four polyphenol-rich tea extract from white, green, oolong, black tea, were investigated by using rat intestinal enzymes and human Caco-2 cells. Regarding rat intestinal enzyme mixture, all four tea extracts were very effective in inhibiting maltase and glucoamylase activity, but only white tea extract inhibited sucrase and isomaltase activity and the inhibition was limited. Mixed-type inhibition on rat maltase activity was observed. Tea extracts in combination with acarbose, produced a synergistic inhibitory effect on rat maltase activity. Caco-2 cells experiments were conducted in Transwells. Green tea extract and epigallocatechin gallate show dose-dependent inhibition on human sucrase activity, but no inhibition on rat sucrase activity. The opposite was observed on maltase activity. The results highlighted the different response in the two investigated model systems and show that tea polyphenols are good inhibitors for α-glucosidase activity.


Asunto(s)
Glicósido Hidrolasas/antagonistas & inhibidores , Intestinos/enzimología , Extractos Vegetales/química , Polifenoles/farmacología , Té/química , Acarbosa/farmacología , Animales , Células CACO-2 , Catequina/análogos & derivados , Catequina/farmacología , Glucano 1,4-alfa-Glucosidasa/antagonistas & inhibidores , Inhibidores de Glicósido Hidrolasas/farmacología , Humanos , Cinética , Oligo-1,6-Glucosidasa/antagonistas & inhibidores , Ratas , Sacarasa/antagonistas & inhibidores , alfa-Glucosidasas/efectos de los fármacos
3.
J Exp Bot ; 58(5): 1151-60, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17244632

RESUMEN

An important aspect of the ripening process of tomato fruit is softening. Softening is accompanied by hydrolysis of the pectin in the cell wall by pectinases, causing loss of cell adhesion in the middle lamella. One of the most significant pectin-degrading enzymes is polygalacturonase (PG). Previous reports have shown that PG in tomato may exist in different forms (PG1, PG2a, PG2b, and PGx) commonly referred to as PG isoenzymes. The gene product PG2 is differentially glycosylated and is thought to associate with other proteins to form PG1 and PGx. This association is thought to modulate its pectin-degrading activity in planta. An 8 kDa protein that is part of the tomato PG1 multiprotein complex has been isolated, purified, and functionally characterized. This protein, designated 'activator' (ACT), belongs to the class of non-specific lipid transfer proteins (nsLTPs). ACT is capable of 'converting' the gene product PG2 into a more active and heat-stable form, which increases PG-mediated pectin degradation in vitro and stimulates PG-mediated tissue breakdown in planta. This finding suggests a new, not previously identified, function for nsLTPs in the modification of hydrolytic enzyme activity. It is proposed that ACT plays a role in the modulation of PG activity during tomato fruit softening.


Asunto(s)
Proteínas Portadoras/metabolismo , Pectinas/metabolismo , Poligalacturonasa/metabolismo , Solanum lycopersicum/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas Portadoras/genética , Estabilidad de Enzimas , Frutas/metabolismo , Calor , Isoenzimas , Solanum lycopersicum/genética , Malus/metabolismo , Datos de Secuencia Molecular , Prunus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA