Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38139112

RESUMEN

For centuries, various species from the genus Cirsium have been utilized in traditional medicine worldwide. A number of ethnopharmacological reports have pointed out that Cirsium plants can be applied to diminish digestive problems. Among them, Cirsium palustre (L.) Scop. (Asteraceae) stands out as a promising herbal drug candidate because its constituents exhibit antimicrobial and antioxidant potential, as evidenced by ethnopharmacological reports. As a result, the species is particularly intriguing as an adjunctive therapy for functional gastrointestinal and motility disorders. Our research goal was to verify how the extracts, fractions, and main flavonoids of C. palustre affect colon contractility under ex vivo conditions. An alternative model with porcine-isolated colon specimens was used to identify the effects of C. palustre preparations and their primary flavonoids. LC-ESI-MS was utilized to evaluate the impacts of methanol (CP1), methanolic 50% (CP2), and aqueous (CP3) extracts as well as diethyl ether (CP4), ethyl acetate (CP5), and n-butanol (CP6) fractions. Additionally, the impacts of four flavonoids, apigenin (API), luteolin (LUT), apigenin 7-O-glucuronide (A7GLC), and chrysoeriol (CHRY), on spontaneous and acetylcholine-induced motility were assessed under isometric conditions. The results showed that C. palustre extracts, fractions, and their flavonoids exhibit potent motility-regulating effects on colonic smooth muscle. The motility-regulating effect was observed on spontaneous and acetylcholine-induced contractility. All extracts and fractions exhibited an enhancement of the spontaneous contractility of colonic smooth muscle. For acetylcholine-induced activity, CP1, CP2, and CP4 caused a spasmolytic effect, and CP5 and CP6 had a spasmodic effect. LUT and CHRY showed a spasmolytic effect in the case of spontaneous and acetylcholine-induced activity. In contrast, API and A7GLC showed a contractile effect in the case of spontaneous and pharmacologically induced activity. Considering the results obtained from the study, C. palustre could potentially provide benefits in the treatment of functional gastrointestinal disorders characterized by hypomotility and hypermotility.


Asunto(s)
Cirsium , Flavonoides , Flavonoides/farmacología , Extractos Vegetales/farmacología , Apigenina , Acetilcolina , Parasimpatolíticos , Colon
2.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36902263

RESUMEN

Despite the common use of Potentilla L. species (Rosaceae) as herbal medicines, a number of species still remain unexplored. Thus, the present study is a continuation of a study evaluating the phytochemical and biological profiles of aqueous acetone extracts from selected Potentilla species. Altogether, 10 aqueous acetone extracts were obtained from the aerial parts of P. aurea (PAU7), P. erecta (PER7), P. hyparctica (PHY7), P. megalantha (PME7), P. nepalensis (PNE7), P. pensylvanica (PPE7), P. pulcherrima (PPU7), P. rigoi (PRI7), and P. thuringiaca (PTH7), leaves of P. fruticosa (PFR7), as well as from the underground parts of P. alba (PAL7r) and P. erecta (PER7r). The phytochemical evaluation consisted of selected colourimetric methods, including total phenolic (TPC), tannin (TTC), proanthocyanidin (TPrC), phenolic acid (TPAC), and flavonoid (TFC) contents, as well as determination of the qualitative secondary metabolite composition by the employment of LC-HRMS (liquid chromatography-high-resolution mass spectrometry) analysis. The biological assessment included an evaluation of the cytotoxicity and antiproliferative properties of the extracts against human colon epithelial cell line CCD841 CoN and human colon adenocarcinoma cell line LS180. The highest TPC, TTC, and TPAC were found in PER7r (326.28 and 269.79 mg gallic acid equivalents (GAE)/g extract and 263.54 mg caffeic acid equivalents (CAE)/g extract, respectively). The highest TPrC was found in PAL7r (72.63 mg catechin equivalents (CE)/g extract), and the highest TFC was found in PHY7 (113.29 mg rutin equivalents (RE)/g extract). The LC-HRMS analysis showed the presence of a total of 198 compounds, including agrimoniin, pedunculagin, astragalin, ellagic acid, and tiliroside. An examination of the anticancer properties revealed the highest decrease in colon cancer cell viability in response to PAL7r (IC50 = 82 µg/mL), while the strongest antiproliferative effect was observed in LS180 treated with PFR7 (IC50 = 50 µg/mL) and PAL7r (IC50 = 52 µg/mL). An LDH (lactate dehydrogenase) assay revealed that most of the extracts were not cytotoxic against colon epithelial cells. At the same time, the tested extracts for the whole range of concentrations damaged the membranes of colon cancer cells. The highest cytotoxicity was observed for PAL7r, which in concentrations from 25 to 250 µg/mL increased LDH levels by 145.7% and 479.0%, respectively. The previously and currently obtained results indicated that some aqueous acetone extracts from Potentilla species have anticancer potential and thus encourage further studies in order to develop a new efficient and safe therapeutic strategy for people who have been threatened by or suffered from colon cancer.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Potentilla , Humanos , Extractos Vegetales/química , Acetona , Flavonoides/análisis , Fenoles/química , Fitoquímicos , Antioxidantes/química
3.
Planta Med ; 89(1): 19-29, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34715695

RESUMEN

Potentilla alba is a valuable medicinal plant that has been highly praised even before its first appearance in herbal books; however, it has now been forgotten in Western Europe. Currently, this species is used in Eastern Europe as a remedy to treat dysentery and various thyroid gland dysfunctions. The present review summarizes the advances in the phytochemical, pharmacological, and toxicological research related to this plant species. Clinical trials that have been conducted to date support its traditional use for treating thyroid disorders, although its exact mechanism of action, bioavailability, and pharmacokinetics data are missing.


Asunto(s)
Potentilla , Glándula Tiroides , Fitoterapia , Rizoma , Europa (Continente) , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Fitoquímicos
4.
Phytomedicine ; 108: 154520, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36334386

RESUMEN

BACKGROUND: The development of digital technologies and the evolution of open innovation approaches have enabled the creation of diverse virtual organizations and enterprises coordinating their activities primarily online. The open innovation platform titled "International Natural Product Sciences Taskforce" (INPST) was established in 2018, to bring together in collaborative environment individuals and organizations interested in natural product scientific research, and to empower their interactions by using digital communication tools. METHODS: In this work, we present a general overview of INPST activities and showcase the specific use of Twitter as a powerful networking tool that was used to host a one-week "2021 INPST Twitter Networking Event" (spanning from 31st May 2021 to 6th June 2021) based on the application of the Twitter hashtag #INPST. RESULTS AND CONCLUSION: The use of this hashtag during the networking event period was analyzed with Symplur Signals (https://www.symplur.com/), revealing a total of 6,036 tweets, shared by 686 users, which generated a total of 65,004,773 impressions (views of the respective tweets). This networking event's achieved high visibility and participation rate showcases a convincing example of how this social media platform can be used as a highly effective tool to host virtual Twitter-based international biomedical research events.


Asunto(s)
Productos Biológicos , Medios de Comunicación Sociales , Humanos
5.
Molecules ; 27(22)2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36432136

RESUMEN

Hottonia palustris L. is from the genus Hottonia (Primulaceae), and the understanding of its phytochemical and pharmacological properties is limited. In this study, the use of chromatographic techniques led to the isolation of a further eleven compounds, including three new flavonoids: 2',5-dihydroxyflavone 2'-O-ß-glucopyranoside, 5,6-dihydroxyflavone 6-O-(6"-O-glucopyranosyl)-ß-glucopyranoside (hottonioside A), and 4',5,7-trihydroxyflavone 7-O-(2"-O-ß-glucuronide)-ß-glucopyranoside. Their structures were determined using extensive 1D and 2D NMR data and mass spectrometry (HRMS). The qualitative assessment of the chemical composition of the investigated extracts and fractions was performed using the LC-HRMS technique. Furthermore, the antioxidant potential of extracts, fractions, and compounds and their ability to inhibit acetylcholinesterase were also evaluated. Thus, we may conclude that the observed biological effects are the result of the presence of many biologically active compounds, of which dibenzoylmethane is the most active. Therefore, H. palustris is a source of substances with desirable properties in the prevention and treatment of neurodegenerative diseases.


Asunto(s)
Flavonoides , Primulaceae , Flavonoides/farmacología , Flavonoides/química , Antioxidantes/farmacología , Acetilcolinesterasa , Extractos Vegetales/farmacología , Extractos Vegetales/química
6.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36232888

RESUMEN

Scorzonera hispanica is an herbaceous perennial cultivated in Central and Southern Europe. This study aimed to qualitatively and quantitatively evaluate the composition of oil, extracts, and fractions (SH1-SH12) obtained from S. hispanica seeds. Furthermore, an evaluation of biological activities in breast cancer cell lines was also performed. GC-MS analysis revealed that the primary components of the seed oil (SH12) were fatty acids and ß-sitosterol. In the evaluation of extracts (SH1-SH3, SH8-SH10) and fractions (SH4-SH7, SH11) composition, the presence of apigenin, derivatives of p-coumaric and caffeic acids, was reported. In the biological assays, methanolic extract (SH1), diethyl ether (SH4), and chloroform (SH11) fractions exhibited cytotoxicity toward cells. The highest activity was observed for fatty acids- and 3,4-dimethoxycinnamate-rich SH11 (IC50: 399.18 µg/mL for MCF-7, 781.26 µg/mL for MDA-MB-231). SH11 was also observed to induce apoptosis in MCF-7 cells (52.4%). SH1, SH4, and SH11 attenuate signaling pathways and affect the expression of apoptosis-, autophagy-, and inflammation-related proteins. SH12 was non-toxic toward either cancer or normal cell lines in concentrations up to 1 mg/mL. The results suggest that S. hispanica seeds exhibit a wide range of potential uses as a source of oil and bioactive compounds for complementary therapy of breast cancer.


Asunto(s)
Neoplasias de la Mama , Scorzonera , Apigenina , Neoplasias de la Mama/tratamiento farmacológico , Ácidos Cafeicos , Cloroformo , Éter , Ácidos Grasos/farmacología , Femenino , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Células MCF-7 , Extractos Vegetales/farmacología , Aceites de Plantas/farmacología , Semillas
7.
Front Pharmacol ; 13: 1027315, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36249795

RESUMEN

Cinquefoils have been widely used in local folk medicine in Europe and Asia to manage various gastrointestinal inflammations and/or infections, certain forms of cancer, thyroid gland disorders, and wound healing. In the present paper, acetone extracts from aerial parts of selected Potentilla species, namely P. alba (PAL7), P. argentea (PAR7), P. grandiflora (PGR7), P. norvegica (PN7), P. recta (PRE7), and the closely related Drymocalis rupestris (syn. P. rupestris) (PRU7), were analysed for their cytotoxicity and antiproliferative activities against human colon adenocarcinoma cell line LS180 and human colon epithelial cell line CCD841 CoN. Moreover, quantitative assessments of the total polyphenolic (TPC), total tannin (TTC), total proanthocyanidins (TPrC), total flavonoid (TFC), and total phenolic acid (TPAC) were conducted. The analysis of secondary metabolite composition was carried out by LC-PDA-HRMS. The highest TPC and TTC were found in PAR7 (339.72 and 246.92 mg gallic acid equivalents (GAE)/g extract, respectively) and PN7 (332.11 and 252.3 mg GAE/g extract, respectively). The highest TPrC, TFC, and TPAC levels were found for PAL7 (21.28 mg catechin equivalents (CAT)/g extract, 71.85 mg rutin equivalents (RE)/g extract, and 124.18 mg caffeic acid equivalents (CAE)/g extract, respectively). LC-PDA-HRMS analysis revealed the presence of 83 compounds, including brevifolincarboxylic acid, ellagic acid, pedunculagin, agrimoniin, chlorogenic acid, astragalin, and tiliroside. Moreover, the presence of tri-coumaroyl spermidine was demonstrated for the first time in the genus Potentilla. Results of the MTT assay revealed that all tested extracts decreased the viability of both cell lines; however, a markedly stronger effect was observed in the colon cancer cells. The highest selectivity was demonstrated by PAR7, which effectively inhibited the metabolic activity of LS180 cells (IC50 = 38 µg/ml), while at the same time causing the lowest unwanted effects in CCD841 CoN cells (IC50 = 1,134 µg/ml). BrdU assay revealed a significant decrease in DNA synthesis in both examined cell lines in response to all investigated extracts. It should be emphasized that the tested extracts had a stronger effect on colon cancer cells than normal colon cells, and the most significant antiproliferative properties were observed in the case of PAR7 (IC50 LS180 = 174 µg/ml) and PN7 (IC50 LS180 = 169 µg/ml). The results of LDH assay revealed that all tested extracts were not cytotoxic against normal colon epithelial cells, whereas in the cancer cells, all compounds significantly damaged cell membranes, and the observed effect was dose-dependent. The highest cytotoxicity was observed in LS180 cells in response to PAR7, which, in concentrations ranging from 25 to 250 µg/ml, increased LDH release by 110%-1,062%, respectively. Performed studies have revealed that all Potentilla species may be useful sources for anti-colorectal cancer agents; however, additional research is required to prove this definitively.

8.
Metabolites ; 12(9)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36144196

RESUMEN

Cisplatin (CP) is a powerful chemotherapeutic agent; however, its therapeutic use is restricted due to its nephrotoxicity. In this work, we profiled the phytoconstituents of Jasminum grandiflorum flower extract (JGF) using LC-MS/MS and explored the possible molecular mechanisms against acute renal failure through pharmacological network analysis. Furthermore, the possible molecular mechanisms of JGF against acute renal failure were verified in an in vivo nephrotoxicity model caused by cisplatin. LC-MS analysis furnished 26 secondary metabolites. Altogether, there were 112 total hit targets for the identified metabolites, among which 55 were potential consensus targets related to nephrotoxicity based on the network pharmacology approach. Upon narrowing the scope to acute renal failure, using the DisGeNET database, only 30 potential targets were determined. The computational pathway analysis illustrated that JGF might inhibit renal failure through PI3K-Akt, MAPK signaling pathway, and EGFR tyrosine kinase inhibitor resistance. This study was confirmed by in vivo experiment in which kidneys were collected for histopathology and gene expression of mitogen-activated protein kinase 4 (MKK4), MKK7, I-CAM 1, IL-6, and TNF receptor-associated factor 2 (TRAF2). The animal-administered cisplatin exhibited a substantial rise in the expression levels of the MMK4, MKK7, I CAM 1, and TRFA2 genes compared to the control group. To summarize, J. grandiflorum could be a potential source for new reno-protective agents. Further experiments are needed to confirm the obtained activities and determine the therapeutic dose and time.

9.
Molecules ; 27(14)2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35889288

RESUMEN

Four new compounds, 5-hydroxy-2',6'-dimethoxyflavone (4), 5-hydroxy-2',3',6'-trimethoxyflavone (5), 5-dihydroxy-6-methoxyflavone (6), and 5,6'-dihydroxy-2',3'-dimethoxyflavone (7), and three known compounds, 1,3-diphenylpropane-1,3-dione (1), 5-hydroxyflavone (2), and 5-hydroxy-2'-methoxyflavone (3), were isolated from the aerial parts of Hottonia palustris. Their chemical structures were determined through the use of spectral, spectroscopic and crystallographic methods. The quantitative analysis of the compounds (1-7) and the zapotin (ZAP) in methanol (HP1), petroleum (HP6), and two chloroform extracts (HP7 and HP8) were also determined using HPLC-PDA. The biological activity of these compounds and extracts on the oral squamous carcinoma cell (SCC-25) line was investigated by considering their cytotoxic effects using the MTT assay. Subsequently, the most active compounds and extracts were assessed for their effect on DNA biosynthesis. It was found that all tested samples during 48 h treatment of SCC-25 cells induced the DNA biosynthesis-inhibitory activity: compound 1 (IC50, 29.10 ± 1.45 µM), compound 7 (IC50, 40.60 ± 1.65 µM) and extracts ZAP (IC50, 20.33 ± 1.01 µM), HP6 (IC50, 14.90 ± 0.74 µg), HP7 (IC50, 16.70 ± 0.83 µg), and HP1 (IC50, 30.30 ± 1.15 µg). The data suggest that the novel polymethoxyflavones isolated from Hottonia palustris evoke potent DNA biosynthesis inhibitory activity that may be considered in further studies on experimental pharmacotherapy of oral squamous cell carcinoma.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Carcinoma de Células Escamosas/tratamiento farmacológico , Línea Celular , Proteínas Cromosómicas no Histona , ADN , Humanos , Neoplasias de la Boca/tratamiento farmacológico , Extractos Vegetales/química , Extractos Vegetales/farmacología
10.
Med Res Rev ; 42(4): 1423-1462, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35187675

RESUMEN

Cutaneous malignant melanoma is the fastest growing and the most aggressive form of skin cancer that is diagnosed. However, its incidence is relatively scarce compared to the highest mortality rate of all skin cancers. The much more common skin cancers include nonmelanoma malignant skin cancers. Moreover, over the past several decades, the frequency of all skin cancers has increased much more dynamically than that of almost any other type of cancer. Among the available therapeutic options for skin cancers, chemotherapy used immediately after the surgical intervention has been an essential element. Unfortunately, the main problem with conventional chemopreventive regimens involves the lack of response to treatment and the associated side effects. Hence, there is a need for much more effective anticancer drugs. Correspondingly, the targeted alternatives have involved phytochemicals, which are safer chemotherapeutic agents and exhibit competitive anticancer activity with high therapeutic efficacy. Among polyphenolic compounds, some flavonoids and their derivatives, which are mostly found in medicinal plants, have been demonstrated to influence the modulation of signaling pathways at each stage of the carcinogenesis process, which is also important in the context of skin cancers. Hence, this review focuses on an exhaustive overview of the therapeutic effects of luteolin and its derivatives in the treatment and prevention of skin cancers. The bioavailability and structure-activity relationships of luteolin derivatives are also discussed. This review is the first such complete account of all of the scientific reports concerning this particular group of natural compounds that target a specific area of neoplastic diseases.


Asunto(s)
Antineoplásicos , Melanoma , Neoplasias Cutáneas , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Humanos , Luteolina/química , Luteolina/farmacología , Luteolina/uso terapéutico , Melanoma/tratamiento farmacológico , Fitoquímicos , Neoplasias Cutáneas/tratamiento farmacológico
11.
J Ethnopharmacol ; 284: 114755, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34673224

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The paper discusses the traditional ritual, medicinal and insect repellent use of Dysphania schraderiana in Poland, a plant with little ethnobotanical and phytochemical data. Our research suggests that its properties should be further studied comparing it with the related D. botrys and D. ambrosioides. AIM OF THE WORK: D. schraderiana is an aromatic and medicinal annual herb related to D. ambrosioides and D. botrys and practically absent from historical accounts of plant uses in Europe. The aim of this work is to characterise the current use of D. schraderiana in south east Poland on the background of historical Dysphania species use in Europe. MATERIALS AND METHODS: The data on D. schraderiana was collected in 2020, based on interviews with 42 people in rural areas of south-eastern Poland where the species is used today. A range of textual sources were searched including old medicinal herbals, pharmaceutical handbooks, ethnobotanical publications and culinary databases regarding all the uses of Dysphania species in Europe. RESULTS: In the study area D. schraderiana occurs in the whole spectrum of cultivation stages - from being intentionally cultivated to completely wild. The plant is used mainly as an apotropaic and insect repellent, blessed during Catholic church holidays (mainly Assumption Day), and sometimes used as incense in churches (and blessed on Epiphany Day). D. schraderiana rarely occurs in European historical sources, except sometimes classed as a false, inferior form of D. botrys, which has been known for centuries as a moth repellent and treatment for respiratory illness. We hypothesise that the plant was not easily distinguished from D. botrys and their uses strongly overlapped. For some unknown reason the use of D. botrys died out, whereas a relatively large semi-feral population of D. schraderiana exists in south-eastern Poland where it has remained a culturally important plant. CONCLUSIONS: D. schraderiana is a rare case of a non-native plant traditionally used within an area of Europe but previously nearly overlooked in European ethnobotanical literature. Historical uses of Dysphania spp. in other areas of Poland and former Poland (now western Ukraine) suggest that the genus was used more widely in regions beyond the one studied. However, a very compact distribution of use suggests that D. schraderiana may have been brought to SE Poland from a single source outside the study area. Its common name, and use as a holy incense plant, is associated it with the well-known biblical tree resin obtained from Commiphora myrrha (Nees) Engl.


Asunto(s)
Amaranthaceae/química , Medicina Tradicional/métodos , Preparaciones de Plantas/farmacología , Adulto , Anciano , Anciano de 80 o más Años , Conducta Ceremonial , Etnobotánica , Etnofarmacología , Femenino , Humanos , Repelentes de Insectos/aislamiento & purificación , Repelentes de Insectos/farmacología , Entrevistas como Asunto , Masculino , Persona de Mediana Edad , Polonia
12.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34884795

RESUMEN

Compounds of natural origin, an infinite treasure of bioactive chemical entities, persist as an inexhaustible resource for discovering new medicines. In this review, we summarize the naturally occurring ellagitannins, sanguiins, which are bioactive constituents of various traditional medicinal plants, especially from the Rosaceae family. In-depth studies of sanguiin H-6 as an antimicrobial, antiviral, anticancer, anti-inflammatory, and osteoclastogenesis inhibitory agent have led to potent drug candidates. In addition, recently, virtual screening studies have suggested that sanguiin H-6 might increase resistance toward SARS-CoV-2 in the early stages of infection. Further experimental investigations on ADMET (absorption, distribution, metabolism, excretion, and toxicity) supplemented with molecular docking and molecular dynamics simulation are still needed to fully understand sanguiins' mechanism of action. In sum, sanguiins appear to be promising compounds for additional studies, especially for their application in therapies for a multitude of common and debilitating ailments.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Taninos Hidrolizables/química , Taninos Hidrolizables/farmacología , Animales , Antifúngicos/química , Antifúngicos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Farmacocinética , Rosaceae/química , SARS-CoV-2/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
13.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34948021

RESUMEN

The use of plants as traditional medicines is common and has prevailed in many different cultures over time. Polymethoxyflavones (PMFs) are natural polyphenols from the group of flavonoids. Zapotin, a member of the PMFs, is found mainly in citrus plants and is almost exclusively limited to their peels. The chemical structure of zapotin has been questioned from the very beginning, since the structure of flavonoids with a single oxygen atom in the C2' position is extremely rare in the plant kingdom. To clarify this, the structural determination and bio-inspired synthesis of zapotin are discussed in detail in this review. Due to the broad biological potential of PMFs, the complication in the isolation process and characterization of PMFs, as well as their purification, have been estimated by adapting various chromatographic methods. According to available data from the literature, zapotin may be a promising curative agent with extensive biological activities, especially as a chemopreventive factor. Apart from that, zapotin acts as an antidepressant-like, anticancer, antifungal, and antioxidant agent. Finally, accessible studies about zapotin metabolism (absorption, distribution, metabolism, excretion, and toxicity) underline its potential in use as a therapeutic substance.


Asunto(s)
Flavonas/química , Raíces de Plantas/química , Semillas/química , Cromatografía , Flavonas/farmacología , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología
14.
Molecules ; 26(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34500597

RESUMEN

Breast cancer persists as a diffuse source of cancer despite persistent detection and treatment. Flavonoids, a type of polyphenol, appear to be a productive option in the treatment of breast cancer, because of their capacity to regulate the tumor related functions of class of compounds. Plant polyphenols are flavonoids that appear to exhibit properties which are beneficial for breast cancer therapy. Numerous epidemiologic studies have been performed on the dynamic effect of plant polyphenols in the prevention of breast cancer. There are also subclasses of flavonoids that have antioxidant and anticarcinogenic activity. These can regulate the scavenging activity of reactive oxygen species (ROS) which help in cell cycle arrest and suppress the uncontrolled division of cancer cells. Numerous studies have also been performed at the population level, one of which reported a connection between cancer risk and intake of dietary flavonoids. Breast cancer appears to show intertumoral heterogeneity with estrogen receptor positive and negative cells. This review describes breast cancer, its various factors, and the function of flavonoids in the prevention and treatment of breast cancer, namely, how flavonoids and their subtypes are used in treatment. This review proposes that cancer risk can be reduced, and that cancer can be even cured by improving dietary intake. A large number of studies also suggested that the intake of fruit and vegetables is associated with reduced breast cancer and paper also includes the role and the use of nanodelivery of flavonoids in the healing of breast cancer. In addition, the therapeutic potential of orally administered phyto-bioactive compounds (PBCs) is narrowed because of poor stability and oral bioavailability of compounds in the gastrointestinal tract (GIT), and solubility also affects bioavailability. In recent years, creative nanotechnology-based approaches have been advised to enhance the activity of PBCs. Nanotechnology also offers the potential to become aware of disease at earlier stages, such as the detection of hidden or unconcealed metastasis colonies in patients diagnosed with lung, colon, prostate, ovarian, and breast cancer. However, nanoformulation-related effects and safety must not be overlooked. This review gives a brief discussion of nanoformulations and the effect of nanotechnology on herbal drugs.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Flavonoides/farmacología , Nanopartículas/administración & dosificación , Animales , Antioxidantes/farmacología , Disponibilidad Biológica , Neoplasias de la Mama/metabolismo , Femenino , Frutas/química , Humanos , Polifenoles/farmacología , Especies Reactivas de Oxígeno/metabolismo , Verduras/química
15.
J Ethnopharmacol ; 280: 114486, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34352331

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: 'Akebia stem' (Akebiae caulis) is one of the newest raw materials officially introduced into therapeutic practice from traditional Chinese medicine. A monograph on this material appeared for the first time in 2018 in Supplement 9.6 to the 9th edition of the European Pharmacopoeia. In the latest 10th edition of the European Pharmacopoeia, the monograph remained unchanged. The 'Akebia stem' monograph allows the use, as a raw material, of Akebia quinata (Houtt.) Decne., A. trifoliata (Thunb.) Koidz, or a mixture of the two species. AIM OF THE STUDY: The aim of this work is a detailed review of the scientific literature on the genus Akebia (family Lardizabalaceae), with particular emphasis on A. quinata and A. trifoliata, providing information on the botanical, ecological, and chemical characteristics of these species. Professional research on their biological activity has been reviewed. The attention is given to phytochemistry and cosmetology. The traditional use of Akebia species and their potential use in medicine and cosmetology are assessed. In addition, individual papers describing biotechnology research on in vitro cultures of the two Akebia species are presented. MATERIALS AND METHODS: The presented botanical, ecological, phytochemical and biotechnological characterization is based on a thorough review of published scientific research. It is a compilation and evaluation of data on the chemical composition and biological activities of these Akebia species. RESULTS: This critical review of phytochemical studies demonstrates that triterpenoid saponins are dominant secondary metabolites of these species. A comparative analysis of phytochemical studies on A. quinata and A. trifoliata stems, roots, fruits, and seeds showed differences in metabolites based on the plant parts and species. The triterpenoid saponins mutongsaponin C and saponin Pj1 have been found only in A. trifoliata, whereas the phenolic glycoside 2-(3,4-dihydroxyphenyl)-ethyl-O-ß-D-glucopyranoside has been found only in A. quinata. Biological activity studies of A. quinata stem, leaf and/or fruit extracts have confirmed diuretic, hepatoregenerative, neuroprotective, analgesic, anti-inflammatory, and anti-obesity effects and an influence on ethanol metabolism. Different action profiles have been demonstrated for A. trifoliata stem, leaf and/or fruit extracts. Studies have proven the antibacterial and anticancer (liver and stomach) effects of these species. This review presents potential phytopharmacological applications of both species and detailed data on their broad applications in cosmetology. Attention is also drawn to information on the safety of using Akebia. Finally, an overview of biotechnology research on both species is presented. CONCLUSIONS: This review provides comprehensive knowledge about the ethnopharmacological use of Akebia species. Moreover, new findings on the differences in the chemical composition and biological activity profiles are underlined.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Fitoquímicos/farmacología , Ranunculales/química , Animales , Biotecnología , Cosméticos/química , Medicamentos Herbarios Chinos/química , Etnofarmacología , Humanos , Fitoquímicos/química
16.
Curr Top Med Chem ; 21(20): 1788-1803, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34218789

RESUMEN

Herbal remedies have been employed for the treatment and management of different diseases for ages. Herbal medicines are a promising choice over modern synthetic drugs because of their low side effects and are thus considered to be safe and effective in treating human diseases. Lagenaria siceraria (Mol.) Standley fruit (Bottle gourd) belongs to the Cucurbitaceae family that has been used in a different system of traditional medication to treat various diseases. This is a domestic plant that provides food as well as medication. This vegetable have low caloric values and high water contents. The edible portion of it contains phytochemicals like vitamins, proteins, choline, minerals, terpenoids, flavonoids, etc. Several bioactive compounds have been isolated from L. siceraria, including triterpenoids, sterols, cucurbitacins, flavones, C-glycosides and ß-glycosides. Researchers have evaluated various parts of this plant viz. fruit, root, flowers, and leaves for pharmacological activities like antianxiety, antidepressant, diuretic, antimicrobial, cytotoxic, antihyperlipidemic, cardio protective, analgesic, anti-inflammatory, anthelmintic, anti-hyperglycemic, antihepatotoxic, anti-urolithiatic, antistress, antiulcer, anticancer, hepatoprotective, anthelmintic, immunomodulatory, and antioxidant. In this review, an attempt has been made to explore its phytochemical constituents, traditional, medicinal, and pharmacological uses to highlight the therapeutic importance of this well-known plant. This would be helpful in reviving its importance and will highlight its several promising aspects to encourage researchers for further research on L. siceraria.


Asunto(s)
Cucurbitaceae/química , Frutas/química , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Fitoterapia , Plantas Medicinales/química , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
17.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33805898

RESUMEN

Jasione montana L. (Campanulaceae) is used in traditional Belarusian herbal medicine for sleep disorders in children, but the chemical composition and biological activity have not been investigated. In this study, the activities of J. montana extracts, their fractions and main compounds were evaluated in amelanotic melanoma C32 (CRL-1585) cells and normal fibroblasts (PCS-201-012). The extracts and fractions were analyzed using liquid chromatography-photodiode array detection-electrospray ionization-mass spectrometry (LC-PDA-ESI-MS/TOF) to characterize 25 compounds. Further, three major and known constituents, luteolin (22) and its derivatives such as 7-O-glucoside (12) and 7-O-sambubioside (9) were isolated and identified. The cytotoxic activities against fibroblasts and the amelanotic melanoma cell line were determined using the fixable viability stain (FVS) assay. The influence of diethyl ether (Et2O) fraction (JM4) and 22 on apoptosis induction was investigated using an annexin V binding assay. The obtained results showed significant cytotoxicity of JM4 and 22 with IC50 values of 119.7 ± 3.2 and 95.1 ± 7.2 µg/mL, respectively. The proapoptotic potential after 22 treatment in the C32 human amelanotic melanoma cell line was comparable to that of vinblastine sulfate (VLB), detecting 29.2 ± 3.0% apoptotic cells. Moreover, 22 displayed less necrotic potential against melanoma cells than VLB. In addition, the influences of JM4 and 22 on the dysfunction of the mitochondrial membrane potential (MMP), cell cycle and activity of caspases 3, 8, 9, and 10 were established. The effects of JM4 on MMP change (74.5 ± 3.0% of the cells showed a reduced MMP) corresponded to the results obtained from the annexin V binding assay and activation of caspase-9. JM4 and 22 displayed a significant impact on caspase-9 (40.9 ± 2.4% of the cells contained active caspase-9 after JM4 treatment and 16.6 ± 0.8% after incubation with 22) and the intrinsic (mitochondrial) apoptotic pathway. Moreover, studies have shown that JM4 and 22 affect the activation of external apoptosis pathways by inducing the caspase-8 and caspase-10 cascades. Thus, activation of caspase-3 and DNA damage via external and internal apoptotic pathways were observed after treatment with JM4 and 22. The obtained results suggest that J. montana extracts could be developed as new topical preparations with potential anticancer properties due to their promising cytotoxic and proapoptotic potential.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Campanulaceae/química , Flavonoides/farmacología , Luteolina/química , Melanoma/patología , Extractos Vegetales/farmacología , Neoplasias Cutáneas/patología , Apoptosis , Autofagia , Caspasa 3/metabolismo , Línea Celular Tumoral , Cromatografía Liquida , Daño del ADN , Activación Enzimática , Fibroblastos/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Melanoma/tratamiento farmacológico , Potencial de la Membrana Mitocondrial , Fitoquímicos/farmacología , Polifenoles/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Espectrometría de Masa por Ionización de Electrospray , Melanoma Cutáneo Maligno
18.
Molecules ; 26(9)2021 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-33923002

RESUMEN

Artemisia abrotanum L. (southern wormwood) is a plant species with an important position in the history of European and Asian medicine. It is a species famous as a medicinal plant in Central Asia, Asia Minor, and in South-East and Central Europe. The raw materials obtained from this species are Abrotani herba and Abrotani folium. In the traditional European medicine, they have been used successfully most of all in liver and biliary tract diseases, in parasitic diseases in children and as antipyretic medication. In the official European medicine, this plant species is recommended by the French Pharmacopoeia for use in homeopathy. In many European countries, it is used traditionally in allopathy. The latest studies on the biological activity of extracts from the aboveground parts of the plant and/or the leaves, and/or the essential oil have provided evidence of other possible applications related to their antibacterial, antifungal, antioxidant, anticancer, and antiallergic properties. The latest studies have also focused on the repellent activity of the essential oil of this species and the possibility to use it in the prevention of diseases in which insects are the vectors. The main substances obtained from the plant that are responsible for this activity are: the essential oil, coumarins, phenolic acids, and flavonoids. Some of the latest investigations emphasize the large differences in the composition of the essential oil, determined by the geographical (climatic) origin of the plant. A. abrotanum is recommended by the European Cosmetic Ingredients Database (CosIng) as a source of valuable cosmetic ingredients. Additionally, the leaves of this species possess a well-established position in the food industry. This plant species is also the object of biotechnological studies.


Asunto(s)
Antioxidantes/uso terapéutico , Artemisia/química , Medicina Tradicional , Aceites Volátiles/química , Antifúngicos/química , Antifúngicos/uso terapéutico , Antioxidantes/química , Cosméticos , Humanos , Repelentes de Insectos/química , Repelentes de Insectos/uso terapéutico , Aceites Volátiles/uso terapéutico , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Hojas de la Planta/química
19.
Front Pharmacol ; 12: 653993, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33927629

RESUMEN

Artemisia dracunculus L. (tarragon), Asteraceae, is a species that has long been used in traditional Asian medicine, mainly in Iran, Pakistan, Azerbaijan and India. It is known as a spice species in Asia, Europe and the Americas. The raw materials obtained from this species are herb and leaf. The presence of essential oil with a highly variable composition, as well as flavonoids, phenolic acids, coumarins and alkamides, determines the medicinal and/or spice properties of the plant. In traditional Asian medicine, this species is used, for example, in the treatment of digestive system diseases, as an analgesic, hypnotic, antiepileptic, anti-inflammatory and antipyretic agent, and as an effective remedy in the treatment of helminthiasis. Nowadays, A. dracunculus is the subject of professional phytochemical and pharmacological researches. Pharmacological studies have confirmed its anti-inflammatory and analgesic effects known from traditional uses; they have also proved very important new findings regarding its biological activity, such as antioxidant, immunomodulating and anti-tumour activities, as well as hepatoprotective and hypoglycaemic effects. A. dracunculus has long-held an established position in the food industry as a spice. And its use is growing in the cosmetics industry. Moreover, it is the subject of biotechnological research focused mainly on the development of micro-propagation protocols.

20.
Front Pharmacol ; 12: 806891, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095516

RESUMEN

The hemostasis system is often affected by complications associated with cardiovascular diseases, which results in thromboembolic events. Compounds of plant origin and plant extracts are considered as a promising source of substances that could modulate the functioning of the hemostasis system and thus reduce the risk of thromboembolism. Among them, tannins, which are plant-origin compounds with potential effects in hemostasis, deserve a special mention. This paper describes the hemostasis-modifying ability of three groups of tannins, namely ellagitannins, gallotannins, and procyanidins. The review highlights the desirable as well as undesirable influence of tannins on specific components of hemostasis, namely platelets, coagulation system, fibrinolysis system, and endothelium, and the multidirectional effect of these compounds on the thrombotic process. Studies performed under normal and pathological conditions such as diabetes or hypercoagulation are described, and the pathophysiology-dependent action of tannins is also highlighted. Most of the studies presented in the paper were performed in vitro, and due to the low bioavailability of tannins more studies should be conducted in the future to understand their actual activity in vivo.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA