Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Pharmacother ; 167: 115511, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37729733

RESUMEN

Corydalis yanhusuo W. T. Wang, also known as yanhusuo, yuanhu, yanhu and xuanhu, is one of the herb components of many Chinese Traditional Medicine prescriptions such as Jin Ling Zi San and Yuanhu-Zhitong priscription. C. yanhusuo was traditionally used to relieve pain and motivate blood and Qi circulation. Now there has been growing interest in pharmacological effects of alkaloids, the main bioactive components of C. yanhusuo. Eighty-four alkaloids isolated from C. yanhusuo are its important bioactive components and can be characterized into protoberberine alkaloids, aporphine alkaloids, opiate alkaloids and others and proper extraction or co-administration methods modulate their contents and efficacy. Alkaloids from C. yanhusuo have various pharmacological effects on the nervous system, cardiovascular system, cancer and others through multiple molecular mechanisms such as modulating neurotransmitters, ion channels, gut microbiota, HPA axis and signaling pathways and are potential treatments for many diseases. Plenty of novel drug delivery methods such as autologous red blood cells, self-microemulsifying drug delivery systems, nanoparticles and others have also been investigated to better exert the effects of alkaloids from C. yanhusuo. This review summarized the alkaloid components of C. yanhusuo, their pharmacological effects and mechanisms, and methods of drug delivery to lay a foundation for future investigations.

2.
Zhongguo Zhong Yao Za Zhi ; 46(22): 5727-5735, 2021 Nov.
Artículo en Chino | MEDLINE | ID: mdl-34951160

RESUMEN

Mecicinal plants boast abundant natural compounds with significant pharmacological activity, and such compounds, featuring diversified and complex structures, can be used for research and development of drugs. At present, these natural compounds are directly extracted from herbs which, however, suffer from damaged wild resources and shortage of planting resources attributing to the increasing demand. Moreover, the low content in medicinal plants and complex structures are another challenge to the research and development of drugs. Heterologous synthesis with synthetic biology methods is a solution that has attracted wide attention. Synthetic bio-logy for the production of natural active compounds in Chinese medicinal plants involves the exploration of key enzymes in compound bio-synthetic pathways from plants, analysis of enzyme functions and mechanisms, and reconstruction and optimization of biosynthetic pathways in microorganisms for efficient synthesis of compounds. This study briefed the development process of synthetic biology and the biosynthetic pathways of terpenoids, alkaloids, and flavonoids, and summarized the related strategies of synthetic biology such as the reconstruction and optimization of metabolic pathways, regulation of fermentation process, and strain improvement, and the latest applications of heterogeneous synthetic biology in the production of natural compounds from Chinese medicinals. This study is expected to serve as a reference for the efficient production of terpenoids, alkaloids, flavonoids, and other active compounds from Chinese medicinal plants with strategies of synthetic biology.


Asunto(s)
Alcaloides , Plantas Medicinales , Vías Biosintéticas , China , Biología Sintética
3.
Chin J Nat Med ; 17(8): 575-584, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31472894

RESUMEN

3-Hydroxy-3-methylglutaryl-CoA synthase (HMGS) is the first committed enzyme in the MVA pathway and involved in the biosynthesis of terpenes in Tripterygium wilfordii. The full-length cDNA and a 515 bp RNAi target fragment of TwHMGS were ligated into the pH7WG2D and pK7GWIWG2D vectors to respectively overexpress and silence, TwHMGS was overexpressed and silenced in T. wilfordii suspension cells using biolistic-gun mediated transformation, which resulted in 2-fold increase and a drop to 70% in the expression level compared to cells with empty vector controls. During TwHMGS overexpression, the expression of TwHMGR, TwDXR and TwTPS7v2 was significantly upregulated to the control. In the RNAi group, the expression of TwHMGR, TwDXS, TwDXR and TwMCT visibly displayed downregulation to the control. The cells with TwHMGS overexpressed produced twice higher than the control value. These results proved that differential expression of TwHMGS determined the production of triptolide in T. wilfordii and laterally caused different trends of relative gene expression in the terpene biosynthetic pathway. Finally, the substrate acetyl-CoA was docked into the active site of TwHMGS, suggesting the key residues including His247, Lys256 and Arg296 undergo electrostatic or H-bond interactions with acetyl-CoA.


Asunto(s)
Diterpenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Hidroximetilglutaril-CoA Sintasa/genética , Hidroximetilglutaril-CoA Sintasa/metabolismo , Fenantrenos/metabolismo , Proteínas de Plantas/metabolismo , Tripterygium/metabolismo , Acetilcoenzima A/metabolismo , Secuencia de Aminoácidos , Vías Biosintéticas , Dominio Catalítico , Compuestos Epoxi/metabolismo , Hidroximetilglutaril-CoA Sintasa/química , Modelos Moleculares , Triterpenos Pentacíclicos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Interferencia de ARN , Terpenos/metabolismo , Tripterygium/enzimología , Tripterygium/genética , Triterpenos/metabolismo
4.
J Asian Nat Prod Res ; 20(7): 595-604, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28276759

RESUMEN

The biosynthetic pathways of phytosterols and steroidal saponins are located in two adjacent branches which share cycloartenol as substrate. The rate-limiting enzyme S-adenosyl-L-methionine-sterol-C24-methyltransferase 1 (SMT1) facilitates the metabolic flux toward phytosterols. It catalyzes the methylation of the cycloartenol in the side chain of the C24-alkyl group, to generate 24(28)-methylene cycloartenol. In this study, we obtained two full-length sequences of SMT1 genes from Pari polyphylla, designated PpSMT1-1 and PpSMT1-2. The full-length cDNA of PpSMT1-1 was 1369 bp long with an open reading frame (ORF) of 1038 bp, while the PpSMT1-2 had a length of 1222 bp, with a 1005 bp ORF. Bioinformatics analysis confirmed that the two cloned SMTs belong to the SMT1 family. The predicted function was further validated by performing in vitro enzymatic reactions, and the results showed that PpSMT1-1 encodes a cycloartenol-C24-methyltransferase, which catalyzes the conversion of cycloartenol to 24-methylene cycloartenol, whereas PpSMT1-2 lacked this catalytic activity. The tissue expression patterns of the two SMTs revealed differential expression in different organs of Paris polyphylla plants of different developmental stage and age. These results lay the foundation for detailed genetic studies of the biosynthetic pathways of steroid compounds, which constitute the main class of active substances found in P. polyphylla.


Asunto(s)
Melanthiaceae/enzimología , Melanthiaceae/genética , Metiltransferasas/genética , Secuencia de Bases , Catálisis , Clonación Molecular , ADN de Plantas/química , ADN de Plantas/genética , Medicamentos Herbarios Chinos , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Estructura Molecular , Sistemas de Lectura Abierta , Fitosteroles/metabolismo , Triterpenos/metabolismo
5.
Zhongguo Zhong Yao Za Zhi ; 42(7): 1312-1318, 2017 Apr.
Artículo en Chino | MEDLINE | ID: mdl-29052392

RESUMEN

In this study, we cloned a monoterpene synthases, TwMS from Tripterygium wilfordii suspension cells. TwMS gene contained a 1 797 bp open reading frame (ORF), encoding a polypeptide of 579 amino acids, which deduced isoelectric point (pI) was 6.10 and the calculated molecular weight was 69.75 kDa. Bioinformation analysis showed that the sequence of TwMS was consistent with the feature of monoterpene synthases. Differential expression analysis revealed that the relative expression level of TwMS increased significantly after being induced by methyl jasmonate (MeJA). The highest expression level occurred at 24 h. TwMS protein was successfully expressed in Escherichia coli BL21 (DE3), which laid the foundation for identifying the function of T. wilfordii monoterpene synthases.


Asunto(s)
Liasas Intramoleculares/genética , Proteínas de Plantas/genética , Tripterygium/genética , Secuencia de Aminoácidos , Clonación Molecular , Filogenia , Tripterygium/enzimología
6.
Zhongguo Zhong Yao Za Zhi ; 42(2): 220-225, 2017 Jan.
Artículo en Chino | MEDLINE | ID: mdl-28948723

RESUMEN

Based on the transcriptome data, the study cloned full-length cDNA of TwGPPS1 and TwGPPS2 genes from Tripterygium wilfordii suspension cells and then analyzed the bioinformation of the sequence and protein expression. The cloned TwGPPS1 has a 1 278 bp open reading frame (ORF) encoding a polypeptide of 425 amino acids. The deduced isoelectric point (pI) was 6.68, a calculated molecular weight was about 47.189 kDa. The full-length cDNA of the TwGPPS2 contains a 1 269 bp open reading frame (ORF) encoding a polypeptide of 422 amino acids. The deduced isoelectric point (pI) was 6.71, a calculated molecular weight was about 46.774 kDa.The entire reading frame of TwGPPS1,2 was cloned into the pET-32a(+) vector and expressed in E. coli BL21 (DE3) cells to obtain the TwGPPS protein, which laid a basis for further study on the regulation of terpenoid secondary metabolism and biological synthesis.


Asunto(s)
Difosfatos/metabolismo , Diterpenos/metabolismo , Geraniltranstransferasa/genética , Proteínas de Plantas/genética , Tripterygium/enzimología , Clonación Molecular , ADN Complementario , Filogenia , Metabolismo Secundario , Tripterygium/genética
7.
J Asian Nat Prod Res ; 18(7): 619-28, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26785825

RESUMEN

Celastrol is an important bioactive triterpenoid in traditional Chinese medicinal plant, Tripterygium wilfordii. Methyl Jasmonate (MJ) is a common plant hormone which can regulate the secondary metabolism in higher plants. In this study, the mevalonate (MVA) pathway genes in T. wilfordii were firstly cloned. The suspension cells of T. wilfordii were elicited by MJ, and the expressions of MVA pathway genes were all enhanced in different levels ranging from 2.13 to 22.33 times of that at 0 h. The expressions were also enhanced compared with the CK group separately. The accumulation of celastrol in the suspension cells after the treatment was quantified and co-analyzed with the genes expression levels. The production of celastrol was significantly increased to 0.742 mg g(-1) after MJ treatment in 288 h which is consistent with the genes expressions. The results provide plenty of gene information for the biosynthesis of terpenoids in T. wilfordii and a viable way to improve the accumulation of celastrol in T. wilfordii suspension cells.


Asunto(s)
Acetatos/farmacología , Ciclopentanos/farmacología , Oxilipinas/farmacología , Tripterygium/química , Tripterygium/genética , Triterpenos/farmacología , Ácido Mevalónico/metabolismo , Estructura Molecular , Triterpenos Pentacíclicos , Terpenos/metabolismo , Triterpenos/química , Triterpenos/metabolismo
8.
Zhongguo Zhong Yao Za Zhi ; 40(6): 1066-70, 2015 Mar.
Artículo en Chino | MEDLINE | ID: mdl-26226746

RESUMEN

A full-length cDNA of GGPPS gene from Tripterygium wilfordii suspension cells was obtained by use of RACE strategy (GeneBank: KM978333), and then analyzed by bioinformatics approaches. TwGGPPS cDNA has 1857 nucleotides and an open reading frame (ORF) encoding a protein of 514 amino acid residues. The deduced protein has isoelectric point (pI) of 7.85, a calculated molecular weight about 57.13 kD, 5 conserved domains and 2 functional domains. PSORT Prediction showed it was located at plasma membrane. Phylogenetic analysis demonstrated that TwGGPPS1 was similar to GGPPS from other species of plants. For the first time the cloning of geranylgeranyl diphosphate synthase gene from T. wilfordii was reported, it lays the foundation for further research of diterpenoids biosynthetic pathway.


Asunto(s)
Clonación Molecular , Farnesiltransferasa/química , Farnesiltransferasa/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Tripterygium/enzimología , Secuencia de Aminoácidos , Farnesiltransferasa/metabolismo , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Tripterygium/química , Tripterygium/genética
9.
Zhongguo Zhong Yao Za Zhi ; 40(21): 4165-70, 2015 Nov.
Artículo en Chino | MEDLINE | ID: mdl-27071250

RESUMEN

4-(Cytidine-5-diphospho) -2-C-methyl-D-erythritol kinase is a key enzyme in the biosynthesis pathway of terpenoids. According to the transcriptome database, the specific primers were designed and used in PCR. The bioinformatic analysis of the sequenced TwCMK gene was performed in several bioinformatics software. The Real-time fluorescence quantification polymerase chain reaction (RT-qPCR) were used to detect the expression levels of TwCMK from T. wilfordii after elicitor MeJA supplied. The results showed that the full length of TwCMK cDNA was 1 732 bp encoding 387 amino acids. The theoretical isoelectric point of the putative TwCMK protein was 5.79 and the molecular weight was about 42.85 kDa. MeJA stimulated the rising of TwCMK expression in suspension cell and signally impacted at 24 h. The research provides a basis for further study on the regulation of terpenoid secondary metabolism and biological synthesis.


Asunto(s)
Clonación Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas de Plantas/genética , Tripterygium/enzimología , Secuencia de Aminoácidos , Biología Computacional , Regulación de la Expresión Génica de las Plantas , Modelos Moleculares , Datos de Secuencia Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Tripterygium/química , Tripterygium/genética
10.
Zhongguo Zhong Yao Za Zhi ; 40(22): 4378-83, 2015 Nov.
Artículo en Chino | MEDLINE | ID: mdl-27097410

RESUMEN

To clone the 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (TwMCT) full length cDNA from Tripterygium wilfordii, the specific primers were designed according to the transcriptome data and the LCPCR were carried out. After a series of bioinformatics analysis on the TwMCT, the MeJA induced expression content were investigated by real-time fluorescence quantification polymerase chain reaction (RT-qPCR). The result showed that the full of TwMCTcDNA was 1 318 bp nucleotides encoding 311 amino acids. The molecular weight of the deduced TwMCT protein was about 34.14 kDa and the theoretical isoelectric point was 8.65. Result of the RT-qPCR analysis indicated that the content of TwMCT mRNA expression in T. wilfordii suspension cell was rising after treating with MeJA and reached the maximum in 24 h. Cloning and analyzing TwMCT gene from T. wilfordii provided gene element for studying the function and expression regulation of secondary metabolites.


Asunto(s)
Clonación Molecular , Nucleotidiltransferasas/genética , Proteínas de Plantas/genética , Tripterygium/enzimología , Secuencia de Aminoácidos , Eritritol/análogos & derivados , Eritritol/metabolismo , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Nucleotidiltransferasas/química , Nucleotidiltransferasas/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Estructura Secundaria de Proteína , Alineación de Secuencia , Fosfatos de Azúcar/metabolismo , Tripterygium/química , Tripterygium/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA