Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
mBio ; 10(1)2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808698

RESUMEN

Manganese (Mn) is an essential micronutrient critical for the pathogenesis of Staphylococcus aureus, a significant cause of human morbidity and mortality. Paradoxically, excess Mn is toxic; therefore, maintenance of intracellular Mn homeostasis is required for survival. Here we describe a Mn exporter in S. aureus, MntE, which is a member of the cation diffusion facilitator (CDF) protein family and conserved among Gram-positive pathogens. Upregulation of mntE transcription in response to excess Mn is dependent on the presence of MntR, a transcriptional repressor of the mntABC Mn uptake system. Inactivation of mntE or mntR leads to reduced growth in media supplemented with Mn, demonstrating MntE is required for detoxification of excess Mn. Inactivation of mntE results in elevated levels of intracellular Mn, but reduced intracellular iron (Fe) levels, supporting the hypothesis that MntE functions as a Mn efflux pump and Mn efflux influences Fe homeostasis. Strains inactivated for mntE are more sensitive to the oxidants NaOCl and paraquat, indicating Mn homeostasis is critical for resisting oxidative stress. Furthermore, mntE and mntR are required for full virulence of S. aureus during infection, suggesting S. aureus experiences Mn toxicity in vivo Combined, these data support a model in which MntR controls Mn homeostasis by balancing transcriptional repression of mntABC and induction of mntE, both of which are critical for S. aureus pathogenesis. Thus, Mn efflux contributes to bacterial survival and virulence during infection, establishing MntE as a potential antimicrobial target and expanding our understanding of Mn homeostasis.IMPORTANCE Manganese (Mn) is generally viewed as a critical nutrient that is beneficial to pathogenic bacteria due to its function as an enzymatic cofactor and its capability of acting as an antioxidant; yet paradoxically, high concentrations of this transition metal can be toxic. In this work, we demonstrate Staphylococcus aureus utilizes the cation diffusion facilitator (CDF) family protein MntE to alleviate Mn toxicity through efflux of excess Mn. Inactivation of mntE leads to a significant reduction in S. aureus resistance to oxidative stress and S. aureus-mediated mortality within a mouse model of systemic infection. These results highlight the importance of MntE-mediated Mn detoxification in intracellular Mn homeostasis, resistance to oxidative stress, and S. aureus virulence. Therefore, this establishes MntE as a potential target for development of anti-S. aureus therapeutics.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Manganeso/metabolismo , Estrés Oxidativo/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Animales , Proteínas de Transporte de Catión/genética , Modelos Animales de Enfermedad , Regulación Bacteriana de la Expresión Génica , Homeostasis , Hierro/metabolismo , Manganeso/toxicidad , Ratones Endogámicos BALB C , Viabilidad Microbiana , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Staphylococcus aureus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Virulencia/efectos de los fármacos
2.
Cell Host Microbe ; 22(4): 531-542.e8, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-28943329

RESUMEN

Diet, and specifically dietary metals, can modify the risk of infection. However, the mechanisms by which manganese (Mn), a common dietary supplement, alters infection remain unexplored. We report that dietary Mn levels dictate the outcome of systemic infections caused by Staphylococcus aureus, a leading cause of bacterial endocarditis. Mice fed a high Mn diet display alterations in Mn levels and localization within infected tissues, and S. aureus virulence and infection of the heart are enhanced. Although the canonical mammalian Mn-sequestering protein calprotectin surrounds staphylococcal heart abscesses, calprotectin is not released into the abscess nidus and does not limit Mn in this organ. Consequently, excess Mn is bioavailable to S. aureus in the heart. Bioavailable Mn is utilized by S. aureus to detoxify reactive oxygen species and protect against neutrophil killing, enhancing fitness within the heart. Therefore, a single dietary modification overwhelms vital host antimicrobial strategies, leading to fatal staphylococcal infection.


Asunto(s)
Endocarditis Bacteriana/microbiología , Corazón/microbiología , Manganeso/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo , Absceso , Animales , Dieta , Modelos Animales de Enfermedad , Corazón/fisiopatología , Humanos , Complejo de Antígeno L1 de Leucocito/metabolismo , Hígado/microbiología , Hígado/fisiopatología , Manganeso/análisis , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Staphylococcus aureus/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA