Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Fish Physiol Biochem ; 50(2): 527-541, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38099984

RESUMEN

The widespread use of pesticides in some areas where fish species such as tilapia are farmed may cause damage to the environment and affect commercial fish and therefore, human health. Water leaching with the pesticide trichlorfon, during the fumigation season in the field, can affect water quality in fish farms and consequently affect fish health. At the same time, the use of immunomodulatory compounds such as ß-glucan supplied in the diet has become widespread in fish farms as it has been shown that improves the overall immune response. The present research examines the immunomodulatory impacts observed in macrophages of Nile tilapia (Oreochromis niloticus) after being fed a diet supplemented with ß-glucan for 15 days, followed by their in vitro exposure to trichlorfon, an organophosphate pesticide, at concentrations of 100 and 500 µg mL-1 for 24 h. The results showed that ß-glucan diet improved the viability of cells exposed to trichlorfon and their antioxidant capacity. However, ß-glucan did not counteract the effects of the pesticide as for the ability to protect against bacterial infection. From the present results, it can be concluded that ß-glucan feeding exerted a protective role against oxidative damage in cells, but it was not enough to reduce the deleterious effects of trichlorfon on the microbicidal capacity of macrophages exposed to this pesticide.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Insecticidas , Tilapia , beta-Glucanos , Humanos , Animales , Triclorfón , beta-Glucanos/farmacología , Dieta/veterinaria , Inmunidad Innata , Suplementos Dietéticos/análisis , Cíclidos/fisiología , Macrófagos , Alimentación Animal/análisis , Enfermedades de los Peces/microbiología
2.
Front Immunol ; 14: 1247199, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711618

RESUMEN

The present study explores the effects of two supplementation levels of Debaryomyces hansenii (1.1% and 2.2%) as a probiotic in a reference low fish meal-based diet on the skin mucosal tissue in Sparus aurata. This study includes the evaluation of fish performance coupled with a holistic study of the skin mucosa: i) a transcriptomic study of the skin tissue, and ii) the evaluation of its secreted mucus both in terms of skin mucosal-associated biomarkers and its defensive capacity by means of co-culture analysis with two pathogenic bacteria. Results showed that after 70 days of diet administration, fish fed the diet supplemented with D. hansenii at 1.1% presented increased somatic growth and a better feed conversion ratio, compared to fish fed the control diet. In contrast, fish fed the diet including 2.2% of the probiotic presented intermediate values. Regarding gene regulation, the probiotic administration at 1.1% resulted in 712 differentially expressed genes (DEGs), among which 53.4% and 46.6% were up- and down-regulated, respectively. In particular, D. hansenii modulated some skin biological processes related to immunity and metabolism. Specifically, D. hansenii administration induced a strong modulation of some immune biological-related processes (61 DEGs), mainly involved in B- and T-cell regulatory pathways. Furthermore, dietary D. hansenii promoted the skin barrier function by the upregulation of anchoring junction genes (23 DEGs), which reinforces the physical defense against potential skin damage. In contrast, the skin showed modulated genes related to extracellular exosome and membrane organization (50 DEGs). This modulated functioning is of great interest, particularly in relation to the increased skin mucus defensive capacity observed in the bacterial co-culture in vitro trials, which could be related to the increased modulation and exudation of the innate immune components from the skin cells into the mucus. In summary, the modulation of innate immune parameters coupled with increased skin barrier function and cell trafficking potentiates the skin's physical barrier and mucus defensive capacity, while maintaining the skin mucosa's homeostatic immune and metabolic status. These findings confirmed the advantages of D. hansenii supplementation in low fish meal-based diets, demonstrating the probiotic benefits on cultured marine species.


Asunto(s)
Debaryomyces , Dorada , Animales , Dieta , Suplementos Dietéticos , Piel
3.
Front Immunol ; 12: 737601, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867959

RESUMEN

In the present study, the modulation of the transcriptional immune response (microarray analysis) in the head kidney (HK) of the anadromous fish Atlantic salmon (Salmo salar) fed a diet supplemented with an olive fruit extract (AQUOLIVE®) was evaluated. At the end of the trial (133 days), in order to investigate the immunomodulatory properties of the phytogenic tested against a bacterial infection, an in vivo challenge with Aeromonas salmonicida was performed. A total number of 1,027 differentially expressed genes (DEGs) (805 up- and 222 downregulated) were found when comparing the transcriptomic profiling of the HK from fish fed the control and AQUOLIVE® diets. The HK transcripteractome revealed an expression profile that mainly favored biological processes related to immunity. Particularly, the signaling of i-kappa B kinase/NF-kappa and the activation of leukocytes, such as granulocytes and neutrophils degranulation, were suggested to be the primary actors of the innate immune response promoted by the tested functional feed additive in the HK. Moreover, the bacterial challenge with A. salmonicida that lasted 12 days showed that the cumulative survival was higher in fish fed the AQUOLIVE® diet (96.9 ± 6.4%) than the control group (60.7 ± 13.5%). These results indicate that the dietary supplementation of AQUOLIVE® at the level of 0.15% enhanced the systemic immune response and reduced the A. salmonicida cumulative mortality in Atlantic salmon smolts.


Asunto(s)
Enfermedades de los Peces/inmunología , Enfermedades de los Peces/prevención & control , Forunculosis/inmunología , Forunculosis/prevención & control , Olea/química , Fitoterapia/veterinaria , Salmo salar/inmunología , Salmo salar/microbiología , Aeromonas salmonicida/inmunología , Aeromonas salmonicida/patogenicidad , Animales , Enfermedades de los Peces/microbiología , Forunculosis/microbiología , Perfilación de la Expresión Génica , Riñón Cefálico/efectos de los fármacos , Riñón Cefálico/inmunología , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/genética , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Polifenoles/administración & dosificación , Salmo salar/genética , Triterpenos/administración & dosificación
4.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34768822

RESUMEN

The feeding behavior in fish is a complex activity that relies on the ability of the brain to integrate multiple signals to produce appropriate responses in terms of food intake, energy expenditure, and metabolic activity. Upon stress cues including viral infection or mediators such as the proinflammatory cytokines, prostaglandins, and cortisol, both Pomc and Npy/Agrp neurons from the hypothalamus are stimulated, thus triggering a response that controls both energy storage and expenditure. However, how appetite modulators or neuro-immune cues link pathogenesis and energy homeostasis in fish remains poorly understood. Here, we provide the first evidence of a molecular linkage between inflammation and food intake in Salmon salar. We show that in vivo viral challenge with infectious pancreatic necrosis virus (IPNV) impacts food consumption by activating anorexic genes such as mc4r, crf, and pomcb and 5-HT in the brain of S. salar. At the molecular level, viral infection induces an overall reduction in lipid content in the liver, favoring the production of AA and EPA associated with the increment of elovl2 gene. In addition, infection upregulates leptin signaling and inhibits insulin signaling. These changes are accompanied by a robust inflammatory response represented by the increment of Il-1b, Il-6, Tnfa, and Pge2 as well as an increased cortisol level in vivo. Thus, we propose a model in which hypothalamic neurons respond to inflammatory cytokines and stress-related molecules and interact with appetite induction/inhibition. These findings provide evidence of crosstalk between pathogenesis-driven inflammation and hypothalamic-pituitary-adrenocortical axes in stress-induced food intake behavior in fish.


Asunto(s)
Infecciones por Birnaviridae , Conducta Alimentaria , Hipotálamo/metabolismo , Inflamación , Metabolismo de los Lípidos , Salmo salar/fisiología , Animales , Citocinas/inmunología , Citocinas/metabolismo , Hipotálamo/fisiología , Virus de la Necrosis Pancreática Infecciosa , Insulina/metabolismo , Leptina/metabolismo , Salmo salar/metabolismo , Salmo salar/virología , Transducción de Señal
5.
Front Immunol ; 12: 693613, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34295335

RESUMEN

ß-glucans are prebiotic and/or food additives used by the aquaculture industry to enhance the immune response of fish. Their efficiency may vary according to their origin and structure. In this study, the immunostimulant effects of two ß-glucan types extracted from wild-type baker's yeast (Saccharomyces cerevisiae) and its null-mutant Gas1 were investigated. Gas1 has a beta-1,3-glucanosyltransferase activity necessary for cell wall assembly. Using a positive (commercial product MacroGard®) and a negative control (a diet without glucans), we evaluated the immune responses and disease resistance of rainbow trout juveniles (mean weight, ~44 g) fed control, low (0.2%) and high (0.5%) doses of Macrogard®, Gas1, and Wild type-ß-glucan after a short-term (15 days, D15) or mid-term (36 days, D36) feeding periods. We found that ß-glucan supplemented diets did not affect growth performance, mortality, splenic index, or leukocyte respiratory burst activity on D15 nor D36. However, each ß-glucan triggered different immune effectors, depending of the doses or length of exposure compared to others and/or the negative control. Indeed, high dose of MacroGard® significantly increased lysozyme activities at D15 compared with the control and other diets (p<0.05). At D36, MacroGard ß-glucan enhanced the production of lymphocytes in comparison with the control diet (p<0.05). Regarding WT ß-glucan, at D36, WT-ß-glucan, especially the high dose, provided the highest enzymatic activities (lysozyme and ACH50) and Ig level (p<0.01). Furthermore, on D36, Gas1 also increased lysozyme activity, Ig proportion, and some immune genes (mcsfra, hepcidin) compared with MacroGard® (p<0.05). Besides, both doses of Gas1-ß-glucans increased the resistance of juveniles to bacterial infection highlighted by a higher survival rate at 14 days post-challenge compared with the control and other types and doses of ß-glucans (p<0.05). In conclusion, our results suggest that Gas1-ß-glucan could represent a promising immunostimulant that would help to prevent diseases in aquaculture even more efficiently than other ß-glucans already in use. Mode of action and particular efficiency of this new Gas1 mutant are debated.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Aeromonas salmonicida/patogenicidad , Suplementos Dietéticos , Forunculosis/prevención & control , Infecciones por Bacterias Gramnegativas/veterinaria , Oncorhynchus mykiss/microbiología , beta-Glucanos/farmacología , Aeromonas salmonicida/inmunología , Alimentación Animal , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Explotaciones Pesqueras , Forunculosis/inmunología , Forunculosis/microbiología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/prevención & control , Inmunidad Humoral/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Leucocitos/efectos de los fármacos , Leucocitos/inmunología , Leucocitos/metabolismo , Oncorhynchus mykiss/inmunología , Oncorhynchus mykiss/metabolismo , Factores de Tiempo
6.
Front Immunol ; 12: 670279, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054843

RESUMEN

The inclusion of a medicinal plant leaf extract (MPLE) from sage (Salvia officinalis) and lemon verbena (Lippia citriodora), rich in verbascoside and triterpenic compounds like ursolic acid, was evaluated in gilthead seabream (Sparus aurata) fed a low fishmeal-based diet (48% crude protein, 17% crude fat, 21.7 MJ kg-1, 7% fishmeal, 15% fish oil) for 92 days. In particular, the study focused on the effect of these phytogenic compounds on the gut condition by analyzing the transcriptomic profiling (microarray analysis) and histological structure of the intestinal mucosa, as well as the histochemical properties of mucins stored in goblet cells. A total number of 506 differentially expressed genes (285 up- and 221 down-regulated) were found when comparing the transcriptomic profiling of the intestine from fish fed the control and MPLE diets. The gut transcripteractome revealed an expression profile that favored biological mechanisms associated to the 1) immune system, particularly involving T cell activation and differentiation, 2) gut integrity (i.e., adherens and tight junctions) and cellular proliferation, and 3) cellular proteolytic pathways. The histological analysis showed that the MPLE dietary supplementation promoted an increase in the number of intestinal goblet cells and modified the composition of mucins' glycoproteins stored in goblet cells, with an increase in the staining intensity of neutral mucins, as well as in mucins rich in carboxylated and weakly sulfated glycoconjugates, particularly those rich in sialic acid residues. The integration of transcriptomic and histological results showed that the evaluated MPLE from sage and lemon verbena is responsible for the maintenance of intestinal health, supporting gut homeostasis and increasing the integrity of the intestinal epithelium, which suggests that this phytogenic may be considered as a promising sustainable functional additive for aquafeeds.


Asunto(s)
Inmunidad Mucosa/efectos de los fármacos , Factores Inmunológicos/farmacología , Uniones Intercelulares/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Extractos Vegetales/farmacología , Salvia officinalis , Dorada , Linfocitos T/efectos de los fármacos , Verbenaceae , Uniones Adherentes/efectos de los fármacos , Uniones Adherentes/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Células Caliciformes/efectos de los fármacos , Células Caliciformes/inmunología , Células Caliciformes/metabolismo , Factores Inmunológicos/aislamiento & purificación , Uniones Intercelulares/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Activación de Linfocitos/efectos de los fármacos , Mucinas/metabolismo , Permeabilidad/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta , Salvia officinalis/química , Dorada/genética , Dorada/inmunología , Dorada/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Transcriptoma , Verbenaceae/química
7.
Front Immunol ; 12: 633621, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777020

RESUMEN

One of the main targets for the use of phytogenics in aquafeeds is the mucosal tissues as they constitute a physical and biochemical shield against environmental and pathogenic threats, comprising elements from both the innate and acquired immunity. In the present study, the modulation of the skin transcriptional immune response, the bacterial growth capacity in skin mucus, and the overall health condition of gilthead seabream (Sparus aurata) juveniles fed a dietary supplementation of garlic essential oil, carvacrol, and thymol were assessed. The enrichment analysis of the skin transcriptional profile of fish fed the phytogenic-supplemented diet revealed the regulation of genes associated to cellular components involved in the secretory pathway, suggesting the stimulation, and recruitment of phagocytic cells. Genes recognized by their involvement in non-specific immune response were also identified in the analysis. The promotion of the secretion of non-specific immune molecules into the skin mucus was proposed to be involved in the in vitro decreased growth capacity of pathogenic bacteria in the mucus of fish fed the phytogenic-supplemented diet. Although the mucus antioxidant capacity was not affected by the phytogenics supplementation, the regulation of genes coding for oxidative stress enzymes suggested the reduction of the skin oxidative stress. Additionally, the decreased levels of cortisol in mucus indicated a reduction in the fish allostatic load due to the properties of the tested additive. Altogether, the dietary garlic, carvacrol, and thymol appear to promote the gilthead seabream skin innate immunity and the mucus protective capacity, decreasing its susceptibility to be colonized by pathogenic bacteria.


Asunto(s)
Inmunidad Innata/efectos de los fármacos , Moco/metabolismo , Aceites Volátiles/farmacología , Dorada/inmunología , Vías Secretoras/efectos de los fármacos , Piel/efectos de los fármacos , Alimentación Animal/análisis , Animales , Acuicultura , Cimenos/química , Cimenos/farmacología , Suplementos Dietéticos/análisis , Ajo/química , Inmunidad Innata/genética , Inmunidad Mucosa/efectos de los fármacos , Moco/efectos de los fármacos , Moco/microbiología , Aceites Volátiles/clasificación , Dorada/genética , Vías Secretoras/inmunología , Timol/química , Timol/farmacología
8.
Front Immunol ; 12: 625297, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746962

RESUMEN

Essential oils (EOs) are promising alternatives to chemotherapeutics in animal production due to their immunostimulant, antimicrobial, and antioxidant properties, without associated environmental or hazardous side effects. In the present study, the modulation of the transcriptional immune response (microarray analysis) and microbiota [16S Ribosomal RNA (rRNA) sequencing] in the intestine of the euryhaline fish gilthead seabream (Sparus aurata) fed a dietary supplementation of garlic, carvacrol, and thymol EOs was evaluated. The transcriptomic functional analysis showed the regulation of genes related to processes of proteolysis and inflammatory modulation, immunity, transport and secretion, response to cyclic compounds, symbiosis, and RNA metabolism in fish fed the EOs-supplemented diet. Particularly, the activation of leukocytes, such as acidophilic granulocytes, was suggested to be the primary actors of the innate immune response promoted by the tested functional feed additive in the gut. Fish growth performance and gut microbiota alpha diversity indices were not affected, while dietary EOs promoted alterations in bacterial abundances in terms of phylum, class, and genus. Subtle, but significant alterations in microbiota composition, such as the decrease in Bacteroidia and Clostridia classes, were suggested to participate in the modulation of the intestine transcriptional immune profile observed in fish fed the EOs diet. Moreover, regarding microbiota functionality, increased bacterial sequences associated with glutathione and lipid metabolisms, among others, detected in fish fed the EOs supported the metabolic alterations suggested to potentially affect the observed immune-related transcriptional response. The overall results indicated that the tested dietary EOs may promote intestinal local immunity through the impact of the EOs on the host-microbial co-metabolism and consequent regulation of significant biological processes, evidencing the crosstalk between gut and microbiota in the inflammatory regulation upon administration of immunostimulant feed additives.


Asunto(s)
Bacterias/efectos de los fármacos , Suplementos Dietéticos , Microbioma Gastrointestinal/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Inmunidad Mucosa/efectos de los fármacos , Intestinos/efectos de los fármacos , Aceites Volátiles/administración & dosificación , Dorada , Transcriptoma/efectos de los fármacos , Compuestos Alílicos/administración & dosificación , Alimentación Animal , Animales , Bacterias/genética , Bacterias/crecimiento & desarrollo , Cimenos/administración & dosificación , Dieta , Combinación de Medicamentos , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/efectos de los fármacos , Inmunidad Innata/genética , Inmunidad Mucosa/genética , Intestinos/inmunología , Intestinos/microbiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Ribotipificación , Dorada/genética , Dorada/inmunología , Dorada/metabolismo , Dorada/microbiología , Sulfuros/administración & dosificación , Timol/administración & dosificación
9.
Sci Rep ; 10(1): 17764, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33082387

RESUMEN

A microencapsulated feed additive composed by garlic, carvacrol and thymol essential oils (EOs) was evaluated regarding its protective effect in gills parasitized by Sparicotyle chrysophrii in Sparus aurata. A nutritional trial (65 days) followed by a cohabitation challenge with parasitized fish (39 days) were performed. Transcriptomic analysis by microarrays of gills of fish fed the EOs diet showed an up-regulation of genes related to biogenesis, vesicular transport and exocytosis, leukocyte-mediated immunity, oxidation-reduction and overall metabolism processes. The functional network obtained indicates a tissue-specific pro-inflammatory immune response arbitrated by degranulating acidophilic granulocytes, sustained by antioxidant and anti-inflammatory responses. The histochemical study of gills also showed an increase of carboxylate glycoproteins containing sialic acid in mucous and epithelial cells of fish fed the EOs diet, suggesting a mucosal defence mechanism through the modulation of mucin secretions. The outcomes of the in vivo challenge supported the transcriptomic results obtained from the nutritional trial, where a significant reduction of 78% in the abundance of S. chrysophrii total parasitation and a decrease in the prevalence of most parasitic developmental stages evaluated were observed in fish fed the EOs diet. These results suggest that the microencapsulation of garlic, carvacrol and thymol EOs could be considered an effective natural dietary strategy with antiparasitic properties against the ectoparasite S. chrysophrii.


Asunto(s)
Antiparasitarios/uso terapéutico , Suplementos Dietéticos , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/parasitología , Branquias/parasitología , Aceites Volátiles/uso terapéutico , Dorada/parasitología , Animales , Antiparasitarios/administración & dosificación , Dieta , Enfermedades de los Peces/genética , Perfilación de la Expresión Génica , Branquias/metabolismo , Aceites Volátiles/administración & dosificación , Dorada/genética , Transcriptoma , Regulación hacia Arriba/efectos de los fármacos
10.
Fish Shellfish Immunol ; 77: 429-437, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29571768

RESUMEN

The immunostimulatory effects of Rhodomyrtus tomentosa leaf extract were evaluated in rainbow trout through changes in expression profile of genes involved in innate immune and antioxidant response, hematology and stress indicators. The concentrations of R. tomentosa at 10 and 100 µg per fish were administrated by intraperitoneal injection, alone or in combination with LPS. After 6 h of administration, the gene expression was measured in head kidney, spleen, and intestine. Results indicated that R. tomentosa exerted immunostimulatory effects by inducing the expression of il10, saa, hepcidin, and sod in head kidney and the expression of il10, tgfß, and inos in intestine. In combination with LPS, the plant suppressed the expression of pro-inflammtory cytokine il1ß, il8 and other consisting of saa and gpx1 in head kidney and il1ß in spleen, pointing out its anti-inflammatory activities. Furthermore, the plant did not exert any impact on hematological parameters, but it was able to reduce cortisol levels when co-administered with LPS, indicating that R. tomentosa could attenuate stress response in rainbow trout. Our observations suggest that R. tomentosa induced the expression of genes involved in cytokine and innate immune response and modulated the physiological stress response as indicated by the suppressed cortisol in rainbow trout.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Citocinas/genética , Expresión Génica/inmunología , Inmunidad Innata/genética , Myrtaceae/química , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/inmunología , Animales , Citocinas/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Perfilación de la Expresión Génica/veterinaria , Inyecciones Intraperitoneales/veterinaria , Extractos Vegetales/farmacología , Hojas de la Planta/química , Estrés Fisiológico
11.
Fish Physiol Biochem ; 44(2): 543-555, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29238889

RESUMEN

Rhodomyrtus tomentosa is a medicinal plant that shows biological effects including immunomodulatory activity on human and other mammals but not in fish. In this study, we evaluated the in vitro immunomodulatory effects of R. tomentosa leaf extract and its active compound, rhodomyrtone, on the immune responses, using rainbow trout (Oncorhynchus mykiss) head kidney (HK) macrophages as a model. The tested immune functions included the expression of genes involved in innate immune and inflammatory responses and the production of reactive oxygen species (ROS). Gene expression was evaluated after exposure to 10 µg mL-1 of R. tomentosa and 1 µg mL-1 of rhodomyrtone for 4 and 24 h. R. tomentosa and rhodomyrtone induced changes in the expression of pro-inflammatory cytokines (il1ß, il8, and tnfα), anti-inflammatory cytokines (il10 and tgfß), inducible enzymes (inos, cox2, and arginase), and an antioxidant enzyme (gpx1). Co-exposure of R. tomentosa with LPS resulted in a prominent reduction in the expression of genes related to an inflammatory process (il1ß, il8, tnfα, inos, saa, hepcidin, and gpx1), suggesting anti-inflammatory effects. Similarly, co-exposure of rhodomyrtone with LPS led to a downregulation of inflammation-related genes (il1ß, inos, saa, and hepcidin). In addition, exposure to both natural plant products caused a reduction in cellular ROS levels by HK macrophages. The present results indicate that R. tomentosa and rhodomyrtone exerted immunostimulatory and anti-inflammatory effects on fish macrophages, thus opening up the possibility of using these natural products to further develop immunostimulants for health management in aquaculture.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Riñón Cefálico/inmunología , Macrófagos/inmunología , Myrtaceae/química , Oncorhynchus mykiss/inmunología , Extractos Vegetales/farmacología , Xantonas/farmacología , Animales , Riñón Cefálico/citología , Riñón Cefálico/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Oncorhynchus mykiss/crecimiento & desarrollo
12.
Fish Shellfish Immunol ; 63: 285-296, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28232282

RESUMEN

Although ß-glucans stimulating effects have already been demonstrated on the immune system of numerous animal species, available data remain relatively variable and more research should be done regarding the complexity of underlying mechanisms. In this context, the present study aimed to evaluate the stress and immune-related effects of dietary ß-glucans (i.e. Macrogard®) by considering a number of influencing factors such as the dose (0, 0.1, 0.2 and 0.5% in food), feeding duration (15 versus 30 days), tissue (blood, kidney, spleen, gills) and infection status (healthy or infected). Blood parameters (lysozyme, ACH50 activities, leucocyte populations) and mRNA expression level of several immune- and stress-related genes (TFN-α1, IL-1ß, IL10, COX-2, TGF-ß, MC2R, HSP70) were measured. Our results suggest that spleen may be a highly responsive organ to dietary ß-glucans both in healthy or infected fish, and that this organ may therefore significantly contribute to the immune reinforcement induced by such immunostimulatory diet. Our study further reveals that overdoses of ß-glucans and/or prolonged medication can lead to a non-reactive physiological status and, consequently, to a poor immune response. All in all, the current data emphasizes the need for further extensive research in the field of dietary ß-glucans as a preventive method for farmed fish protection.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica , Infecciones por Bacterias Gramnegativas/veterinaria , Oncorhynchus mykiss , beta-Glucanos/farmacología , Adyuvantes Inmunológicos/administración & dosificación , Aeromonas hydrophila/fisiología , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos/análisis , Enfermedades de los Peces/genética , Enfermedades de los Peces/microbiología , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Infecciones por Bacterias Gramnegativas/genética , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/microbiología , Inmunidad Innata , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Distribución Tisular , beta-Glucanos/administración & dosificación
13.
PLoS One ; 10(10): e0139967, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26447480

RESUMEN

Infectious diseases and fish feeds management are probably the major expenses in the aquaculture business. Hence, it is a priority to define sustainable strategies which simultaneously avoid therapeutic procedures and reinforce fish immunity. Currently, one preferred approach is the use of immunostimulants which can be supplemented to the fish diets. Arginine is a versatile amino acid with important mechanisms closely related to the immune response. Aiming at finding out how arginine affects the innate immune status or improve disease resistance of European seabass (Dicentrarchus labrax) against vibriosis, fish were fed two arginine-supplemented diets (1% and 2% arginine supplementation). A third diet meeting arginine requirement level for seabass served as control diet. Following 15 or 29 days of feeding, fish were sampled for blood, spleen and gut to assess cell-mediated immune parameters and immune-related gene expression. At the same time, fish from each dietary group were challenged against Vibrio anguillarum and survival was monitored. Cell-mediated immune parameters such as the extracellular superoxide and nitric oxide decreased in fish fed arginine-supplemented diets. Interleukins and immune-cell marker transcripts were down-regulated by the highest supplementation level. Disease resistance data were in accordance with a generally depressed immune status, with increased susceptibility to vibriosis in fish fed arginine supplemented diets. Altogether, these results suggest a general inhibitory effect of arginine on the immune defences and disease resistance of European seabass. Still, further research will certainly clarify arginine immunomodulation pathways thereby allowing the validation of its potential as a prophylactic strategy.


Asunto(s)
Arginina/farmacología , Lubina/metabolismo , Inmunidad Humoral/efectos de los fármacos , Animales , Arginasa/genética , Arginasa/metabolismo , Arginina/metabolismo , Lubina/inmunología , Dieta/veterinaria , Suplementos Dietéticos , Resistencia a la Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Interleucinas/genética , Interleucinas/metabolismo , Óxido Nítrico/metabolismo , Superóxidos/metabolismo , Vibriosis/inmunología , Vibriosis/mortalidad , Vibriosis/veterinaria
14.
Fish Physiol Biochem ; 38(1): 119-41, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22212981

RESUMEN

Little research has been done in optimizing the nitrogenous fraction of the fish diets in order to minimize welfare problems. The purpose of this review is to give an overview on how amino acid (AA) metabolism may be affected when fish are under stress and the possible effects on fish welfare when sub-optimal dietary nitrogen formulations are used to feed fish. In addition, it intends to evaluate the current possibilities, and future prospects, of using improved dietary nitrogen formulations to help fish coping with predictable stressful periods. Both metabolomic and genomic evidence show that stressful husbandry conditions affect AA metabolism in fish and may bring an increase in the requirement of indispensable AA. Supplementation in arginine and leucine, but also eventually in lysine, methionine, threonine and glutamine, may have an important role in enhancing the innate immune system. Tryptophan, as precursor for serotonin, modulates aggressive behaviour and feed intake in fish. Bioactive peptides may bring important advances in immunocompetence, disease control and other aspects of welfare of cultured fish. Fishmeal replacement may reduce immune competence, and the full nutritional potential of plant-protein ingredients is attained only after the removal or inactivation of some antinutritional factors. This review shows that AA metabolism is affected when fish are under stress, and this together with sub-optimal dietary nitrogen formulations may affect fish welfare. Furthermore, improved dietary nitrogen formulations may help fish coping with predictable stressful events.


Asunto(s)
Bienestar del Animal , Dieta/veterinaria , Peces/fisiología , Nitrógeno/metabolismo , Estrés Fisiológico/fisiología , Aminoácidos/metabolismo , Alimentación Animal , Animales , Peces/inmunología , Peces/metabolismo , Estrés Fisiológico/inmunología
15.
Mar Biotechnol (NY) ; 12(1): 88-99, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19609615

RESUMEN

Immunostimulant-containing diets are commonly used in aquaculture to enhance the resistance of cultured fish to disease and stress. Although widespread in use, there have been conflicting results published, and surprisingly little is known about the regulation of immune response-related genes in tissues key to mucosal immunity induced by immunostimulant dietary feeding. Using a salmonid-specific microarray platform enriched with immune-related genes and in situ hybridization, we investigated dietary acclimation in two organs relevant to mucosal immunity, the gills and the intestine, in the rainbow trout (Oncorhynchus mykiss). Immunostimulant diets significantly changed gene expression profiles and gene distribution in a tissue-specific manner: genes and functional Gene Ontology categories involved in immunity were differently expressed at portals of entry where significant changes in genes and functional groups related to remodeling processes and antigen presentation were observed. Furthermore, genes involved in chemotaxis, cell differentiation, antigen-presenting capacity and tissue remodeling were localized in both organs.


Asunto(s)
Citocinas/inmunología , Dieta/métodos , Suplementos Dietéticos , Inmunidad Innata/inmunología , Factores Inmunológicos/inmunología , Membrana Mucosa/inmunología , Oncorhynchus mykiss/inmunología , Animales
16.
Comp Biochem Physiol B Biochem Mol Biol ; 154(2): 179-87, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19539046

RESUMEN

Increased energy content in fish feeds has led to an enhanced fat deposition, particularly in European sea bass, concerning fish farmers. Inclusion of conjugated linoleic acid (CLA) could reduce fat deposition as in other vertebrates. To determine if dietary CLA affects fat deposition, lipid metabolism, lipid composition and morphology of different tissues, growth and selected immune parameters, European sea bass juveniles were fed 4 graded levels of CLA (0, 0.5, 1 and 2%). Growth and feed conversion were not affected by CLA, whereas feed intake was reduced (P<0.05) by feeding 2% CLA. In these fish perivisceral fat was also reduced (P<0.05), particularly reducing (P<0.05) monounsaturated fatty acids. CLA has not affected tissue proximal composition, but reduced (P<0.05) saturated and monounsaturated fatty acids and increased (P<0.05) the n-3 and n-3 highly unsaturated fatty acids in muscle and increase (P<0.05) CLA content in muscle, liver and perivisceral fat. A progressive reduction in lipid vacuolization of hepatocytes cytoplasm and regular-shaped morphology was found in fish fed increased CLA levels, together with a progressive increase in malic enzyme activity (only significant in fish fed 1% CLA). Finally, inclusion of CLA up to 1% increased (P<0.05) plasma lysozyme activity and was positively correlated with alternative complement pathway.


Asunto(s)
Lubina/inmunología , Lubina/metabolismo , Grasas de la Dieta/metabolismo , Ácidos Linoleicos Conjugados/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/anatomía & histología , Hígado/efectos de los fármacos , Animales , Lubina/anatomía & histología , Lubina/crecimiento & desarrollo , Composición Corporal/efectos de los fármacos , Suplementos Dietéticos , Lipogénesis/efectos de los fármacos , Hígado/enzimología , Hígado/metabolismo , Músculos/anatomía & histología , Músculos/efectos de los fármacos , Músculos/metabolismo
17.
J Immunol ; 175(4): 2427-37, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16081814

RESUMEN

Virtually nothing is known about the structure, function, and evolutionary origins of the C3aR in nonmammalian species. Because C3aR and C5aR are thought to have arisen from the same common ancestor, the recent characterization of a C5aR in teleost fish implied the presence of a C3aR in this animal group. In this study we report the cloning of a trout cDNA encoding a 364-aa molecule (TC3aR) that shows a high degree of sequence homology and a strong phylogenetic relationship with mammalian C3aRs. Northern blotting demonstrated that TC3aR was expressed primarily in blood leukocytes. Flow cytometric analysis and immunofluorescence microscopy showed that Abs raised against TC3aR stained to a high degree all blood B lymphocytes and, to a lesser extent, all granulocytes. More importantly, these Abs inhibited trout C3a-mediated intracellular calcium mobilization in trout leukocytes. A fascinating structural feature of TC3aR is the lack of a significant portion of the second extracellular loop (ECL2). In all C3aR molecules characterized to date, the ECL2 is exceptionally large when compared with the same region of C5aR. However, the exact function of the extra portion of ECL2 is unknown. The lack of this segment in TC3aR suggests that the extra piece of ECL2 was not necessary for the interaction of the ancestral C3aR with its ligand. Our findings represent the first C3aR characterized in nonmammalian species and support the hypothesis that if C3aR and C5aR diverged from a common ancestor, this event occurred before the emergence of teleost fish.


Asunto(s)
Proteínas de la Membrana/aislamiento & purificación , Oncorhynchus mykiss , Receptores de Complemento/aislamiento & purificación , Xenopus , Secuencia de Aminoácidos , Animales , Anticuerpos Bloqueadores/química , Sitios de Unión de Anticuerpos , Northern Blotting , Southern Blotting , Calcio/antagonistas & inhibidores , Calcio/metabolismo , Complemento C3a/antagonistas & inhibidores , Complemento C3a/fisiología , Proteínas Inactivadoras de Complemento/fisiología , ADN Complementario/aislamiento & purificación , Técnica del Anticuerpo Fluorescente Indirecta , Cobayas , Humanos , Líquido Intracelular/inmunología , Líquido Intracelular/metabolismo , Leucocitos/inmunología , Leucocitos/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Ratones , Datos de Secuencia Molecular , Ratas , Receptores de Complemento/antagonistas & inhibidores , Receptores de Complemento/inmunología , Receptores de Complemento/metabolismo , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA