Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37175691

RESUMEN

Obesity causes systemic inflammation, hepatic and renal damage, as well as gut microbiota dysbiosis. Alternative vegetable sources rich in polyphenols are known to prevent or delay the progression of metabolic abnormalities during obesity. Vachellia farnesiana (VF) is a potent source of polyphenols with antioxidant and anti-inflammatory activities with potential anti-obesity effects. We performed an in vivo preventive or an interventional experimental study in mice and in vitro experiments with different cell types. In the preventive study, male C57BL/6 mice were fed with a Control diet, a high-fat diet, or a high-fat diet containing either 0.1% methyl gallate, 10% powdered VFP, or 0.5%, 1%, or 2% of a polyphenolic extract (PE) derived from VFP (Vachellia farnesiana pods) for 14 weeks. In the intervention study, two groups of mice were fed for 14 weeks with a high-fat diet and then one switched to a high-fat diet with 10% powdered VFP for ten additional weeks. In the in vitro studies, we evaluated the effect of a VFPE (Vachellia farnesiana polyphenolic extract) on glucose-stimulated insulin secretion in INS-1E cells or of naringenin or methyl gallate on mitochondrial activity in primary hepatocytes and C2C12 myotubes. VFP or a VFPE increased whole-body energy expenditure and mitochondrial activity in skeletal muscle; prevented insulin resistance, hepatic steatosis, and kidney damage; exerted immunomodulatory effects; and reshaped fecal gut microbiota composition in mice fed a high-fat diet. VFPE decreased insulin secretion in INS-1E cells, and its isolated compounds naringenin and methyl gallate increased mitochondrial activity in primary hepatocytes and C2C12 myotubes. In conclusion VFP or a VFPE prevented systemic inflammation, insulin resistance, and hepatic and renal damage in mice fed a high-fat diet associated with increased energy expenditure, improved mitochondrial function, and reduction in insulin secretion.


Asunto(s)
Dieta Alta en Grasa , Resistencia a la Insulina , Masculino , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Prebióticos , Ratones Endogámicos C57BL , Obesidad/metabolismo , Extractos Vegetales/farmacología , Inflamación/tratamiento farmacológico
2.
ACS Omega ; 7(15): 13144-13154, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35474764

RESUMEN

The roots of the cactus Peniocereus greggii, which grows in Northern Mexico and in the south of Arizona, are highly valued by the Pima to treat diabetes and other illnesses, such as breast pain and common cold. As part of our chemical and pharmacological investigation on medicinal plants used for treating diabetes, herein we report the hypoglycemic and antihyperglycemic action of a decoction prepared from the roots of the plant. The active compounds were a series of cholestane steroids, namely, peniocerol (2), desoxyviperidone (3), viperidone (4), and viperidinone (5). Also, a new chemical entity was obtained from an alkalinized chloroform extract (CE1), which was characterized as 3,6-dihydroxycholesta-5,8(9),14-trien-7-one (6) by spectroscopic means. Desoxyviperidone (3) showed an antihyperglycemic action during an oral glucose tolerance test. Compound 3 was also able to decrease blood glucose levels during an intraperitoneal insulin tolerance test in hyperglycemic mice only in combination with insulin, thus behaving as an insulin sensitizer agent. Nevertheless, mitochondrial bioenergetic experiments revealed that compounds 3 and 6 increased basal respiration and proton leak, without affecting the respiration associated with ATP production in C2C12 myotubes. Finally, an ultraefficiency liquid chromatographic method for quantifying desoxyviperidone (3) and viperidone (4) in the crude drug was developed and validated. Altogether, our results demonstrate that Peniocereus greggii decoction possesses a hypoglycemic and antihyperglycemic action in vivo, that sterols 2 and 6 promotes insulin secretion in vitro, and that desoxyviperidone (3) physiologically behaves as an insulin sensitizer agent by a mechanism that may involve mitochondrial proton leak.

3.
Phytomedicine ; 58: 152891, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30901665

RESUMEN

BACKGROUND: Swietenia humilis seeds are consumed in Mexico to treat type 2 diabetes; the antihyperglycemic effect of this species was previously demonstrated and related to the presence of tetranortriterpenoids of the mexicanolide class. PURPOSE AND STUDY DESIGN: The present investigation was conducted to determine the mechanism of action of selected mexicanolides, including 2-hydroxy-destigloyl-6-deoxyswietenine acetate (1), methyl-2-hydroxy-3-ß-tigloyloxy-1-oxomeliac-8(30)-enate (2) and humilinolide H (3), using in vivo experiments with hyperglycemic mice, and cell-based models. METHODS: Nicotinamide-streptozotocin hyperglycemic mice (50-130 mg/kg, i.p.) were used to build antihyperglycemic drug-response curves using an oral glucose tolerance test model. In vitro studies were carried out on INSE1, H4IIE and C2C12 cells to assess insulin secretion, glucose-6-phosphatase inhibition, glucose uptake and mitochondrial bioenergetics, respectively. RESULTS: The combination of the decoction of S. humilis or 2-hydroxy-destigloyl-6-deoxyswietenine acetate (mexicanolide 1) with glibenclamide resulted in a reduction of the antihyperglycemic effect while a significant increase was observed when they were dosed with metformin. These effects were related to KATP SUR blockade, insulin secretion in INSE1 cells, and modulation of 5-HT2 receptors. Furthermore, mexicanolides 1-3 inhibited glucose-phosphatase in H4IIE cells, and enhanced glucose uptake and spare respiratory capacity in C2C12 myotubes. CONCLUSION: S. humilis mexicanolides interact with pharmacological targets at pancreas (KATP channels), liver (glucose-6-phosphatase), and skeletal muscle (mitochondria and possibly glucose transporters) to modulate glucose homeostasis, and could be a promising resource to treat type 2 diabetes.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/farmacología , Limoninas/farmacología , Meliaceae/química , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Prueba de Tolerancia a la Glucosa , Gliburida/farmacología , Hipoglucemiantes/administración & dosificación , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Metformina/farmacología , México , Ratones Endogámicos ICR , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Plantas Medicinales/química
4.
J Nutr Biochem ; 24(11): 1798-809, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23773624

RESUMEN

Recent evidence indicates that several metabolic abnormalities developed during obesity are associated with the presence of dysfunctional adipose tissue. Diet is a key factor that modulates several functions of adipose tissue; however, each nutrient in the diet produces specific changes. Thus, the aim of this work was to study the effect of the interaction of the type (coconut or soybean oil) and amount (5% or 10%) of fat with the type of dietary protein (casein or soy protein) on the functionality of white adipose tissue of Zucker (fa/fa) rats. The results showed that soybean oil reduced adipocyte size and decreased esterified saturated fatty acids in white adipose tissue. Excess dietary fat also modified the composition of esterified fatty acids in white adipose tissue, increased the secretion of saturated fatty acids to serum from white adipose tissue and reduced the process of fatty acids re-esterification. On the other hand, soy protein sensitized the activation of the hormone-sensitive lipase by increasing the phosphorylation of this enzyme (Ser 563) despite rats fed soy protein were normoglucagonemic, in contrast with rats fed casein that showed hyperglucagonemia but reduced hormone-sensitive lipase phosphorylation. Finally, in white adipose tissue, the interaction between the tested dietary components modulated the transcription/translation process of lipid and carbohydrate metabolism genes via the activity of the PERK-endoplasmic reticulum stress response. Therefore, our results showed that the type of protein and the type and amount of dietary fat selectively modify the activity of white adipose tissue, even in a genetic model of obesity.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Grasas de la Dieta/farmacología , Proteínas en la Dieta/farmacología , Adipocitos/citología , Tejido Adiposo Blanco/efectos de los fármacos , Animales , Caseínas/metabolismo , Caseínas/farmacología , Tamaño de la Célula , Aceite de Coco , Estrés del Retículo Endoplásmico/fisiología , Ácidos Grasos/metabolismo , Ácidos Grasos no Esterificados/sangre , Masculino , Aceites de Plantas/farmacología , ARN Mensajero/metabolismo , Ratas , Ratas Zucker , Aceite de Soja/farmacología , Proteínas de Soja/metabolismo , Proteínas de Soja/farmacología
5.
J Nutr ; 132(9): 2538-44, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12221206

RESUMEN

Soy intake reduces cholesterol levels, but neither the exact component in soy causing this reduction nor the mechanism by which cholesterol is reduced is known with certainty. In this study, a genetic screen was performed to identify hepatic mRNA in gerbils regulated by soy or soy isoflavones. Gerbils were fed casein, an alcohol-washed soy-based diet (containing low levels of isoflavones), and the soy-based diet supplemented with an isoflavone-containing soy extract. After feeding for 28 d, gerbils were killed, hepatic RNA was isolated, and genes that were differentially expressed in any of the three dietary conditions were identified. Fifteen different mRNA were originally selected, including two mRNA that were studied further and shown to be highly regulated. Messenger RNA levels for both cytochrome P450-2A and phosphoribosylpyrophosphate synthetase-associated protein were up-regulated in a dose-dependent manner when soy replaced casein in the diet at 0, 33, 67 and 100% of original casein levels. A subsequent experiment used purified amino acid mixtures resembling the percentage amino acid composition of soy and casein to ensure that isoflavone-free protein sources could be tested. Using these mixtures, a 2 x 2 x 2 design tested: natural vs. synthetic protein sources, casein- vs. soy-based diets, and isoflavone extract-supplemented or supplement-free diets. This design demonstrated that these two mRNA were again significantly up-regulated more than twofold (P < 0.05) in gerbils fed all diets containing isoflavones. Induction of these two mRNA by soy may be due to the aryl hydrocarbon receptor element in the promoter region of both genes.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/biosíntesis , Proteínas en la Dieta/administración & dosificación , Isoflavonas/administración & dosificación , Hígado/efectos de los fármacos , Ribosa-Fosfato Pirofosfoquinasa/biosíntesis , Esteroide Hidroxilasas/biosíntesis , Aminoácidos/administración & dosificación , Animales , Hidrocarburo de Aril Hidroxilasas/genética , Northern Blotting , Caseínas/administración & dosificación , Colesterol/sangre , ADN Complementario , Proteínas en la Dieta/análisis , Proteínas en la Dieta/farmacología , Inducción Enzimática/efectos de los fármacos , Gerbillinae , Isoflavonas/farmacología , Hígado/enzimología , Hígado/metabolismo , ARN Mensajero/análisis , Distribución Aleatoria , Ribosa-Fosfato Pirofosfoquinasa/genética , Proteínas de Soja/administración & dosificación , Proteínas de Soja/química , Esteroide Hidroxilasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA