Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Epilepsia ; 64(11): 2968-2981, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37577761

RESUMEN

OBJECTIVE: To investigate the clinical features and potential pathogenesis mechanism of de novo CLPTM1 variants associated with epilepsy. METHODS: Identify de novo genetic variants associated with epilepsy by reanalyzing trio-based whole-exome sequencing data. We analyzed the clinical characteristics of patients with these variants and performed functional in vitro studies in cells expressing mutant complementary DNA for these variants using whole-cell voltage-clamp current recordings and outside-out patch-clamp recordings from transiently transfected human embryonic kidney (HEK) cells. RESULTS: Two de novo missense variants related to epilepsy were identified in the CLPTM1 gene. Functional studies indicated that CLPTM1-p.R454H and CLPTM1-p.R568Q variants reduced the γ-aminobutyric acid A receptor (GABAA R) current response amplitude recorded under voltage clamp compared to the wild-type receptors. These variants also reduced the charge transfer and altered the time course of desensitization and deactivation following rapid removal of GABA. The surface expression of the GABAA R γ2 subunit from the CLPTM1-p.R568Q group was significantly reduced compared to CLPTM1-WT. SIGNIFICANCE: This is the first report of functionally relevant variants within the CLPTM1 gene. Patch-clamp recordings showed that these de novo CLPTM1 variants reduce GABAA R currents and charge transfer, which should promote excitation and hypersynchronous activity. This study may provide insights into the molecular mechanisms of the CLPTM1 variants underlying the patients' phenotypes, as well as for exploring potential therapeutic targets for epilepsy.


Asunto(s)
Epilepsia , Receptores de GABA-A , Humanos , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Epilepsia/genética , Mutación Missense/genética , Fenotipo , Ácido gamma-Aminobutírico , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
2.
Mol Pharmacol ; 100(1): 73-82, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33958481

RESUMEN

Communication between neuronal cells, which is central to brain function, is performed by several classes of ligand-gated ionotropic receptors. The gold-standard technique for measuring rapid receptor response to agonist is manual patch-clamp electrophysiology, capable of the highest temporal resolution of any current electrophysiology technique. We report an automated high-precision patch-clamp system that substantially improves the throughput of these time-consuming pharmacological experiments. The patcherBotPharma enables recording from cells expressing receptors of interest and manipulation of them to enable millisecond solution exchange to activate ligand-gated ionotropic receptors. The solution-handling control allows for autonomous pharmacological concentration-response experimentation on adherent cells, lifted cells, or excised outside-out patches. The system can perform typical ligand-gated ionotropic receptor experimentation protocols autonomously, possessing a high success rate in completing experiments and up to a 10-fold reduction in research effort over the duration of the experiment. Using it, we could rapidly replicate previous data sets, reducing the time it took to produce an eight-point concentration-response curve of the effect of propofol on GABA type A receptor deactivation from likely weeks of recording to ∼13 hours of recording. On average, the rate of data collection of the patcherBotPharma was a data point every 2.1 minutes that the operator spent interacting with the patcherBotPharma The patcherBotPharma provides the ability to conduct complex and comprehensive experimentation that yields data sets not normally within reach of conventional systems that rely on constant human control. This technical advance can contribute to accelerating the examination of the complex function of ion channels and the pharmacological agents that act on them. SIGNIFICANCE STATEMENT: This work presents an automated intracellular pharmacological electrophysiology robot, patcherBotPharma, that substantially improves throughput and reduces human time requirement in pharmacological patch-clamp experiments. The robotic system includes millisecond fluid exchange handling and can perform highly efficient ligand-gated ionotropic receptor experiments. The patcherBotPharma is built using a conventional patch-clamp rig, and the technical advances shown in this work greatly accelerate the ability to conduct high-fidelity pharmacological electrophysiology.


Asunto(s)
Neuronas/citología , Técnicas de Placa-Clamp/instrumentación , Receptores de GABA-A/metabolismo , Animales , Células CHO , Cricetulus , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Ratones , Neuronas/metabolismo , Cultivo Primario de Células , Ratas , Robótica
3.
Am J Hum Genet ; 99(4): 802-816, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27616483

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) are ligand-gated cation channels that mediate excitatory synaptic transmission. Genetic mutations in multiple NMDAR subunits cause various childhood epilepsy syndromes. Here, we report a de novo recurrent heterozygous missense mutation-c.1999G>A (p.Val667Ile)-in a NMDAR gene previously unrecognized to harbor disease-causing mutations, GRIN2D, identified by exome and candidate panel sequencing in two unrelated children with epileptic encephalopathy. The resulting GluN2D p.Val667Ile exchange occurs in the M3 transmembrane domain involved in channel gating. This gain-of-function mutation increases glutamate and glycine potency by 2-fold, increases channel open probability by 6-fold, and reduces receptor sensitivity to endogenous negative modulators such as extracellular protons. Moreover, this mutation prolongs the deactivation time course after glutamate removal, which controls the synaptic time course. Transfection of cultured neurons with human GRIN2D cDNA harboring c.1999G>A leads to dendritic swelling and neuronal cell death, suggestive of excitotoxicity mediated by NMDAR over-activation. Because both individuals' seizures had proven refractory to conventional antiepileptic medications, the sensitivity of mutant NMDARs to FDA-approved NMDAR antagonists was evaluated. Based on these results, oral memantine was administered to both children, with resulting mild to moderate improvement in seizure burden and development. The older proband subsequently developed refractory status epilepticus, with dramatic electroclinical improvement upon treatment with ketamine and magnesium. Overall, these results suggest that NMDAR antagonists can be useful as adjuvant epilepsy therapy in individuals with GRIN2D gain-of-function mutations. This work further demonstrates the value of functionally evaluating a mutation, enabling mechanistic understanding and therapeutic modeling to realize precision medicine for epilepsy.


Asunto(s)
Genes Dominantes/genética , Mutación , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Espasmos Infantiles/tratamiento farmacológico , Espasmos Infantiles/genética , Secuencia de Aminoácidos , Secuencia de Bases , Muerte Celular , Niño , Análisis Mutacional de ADN , Dendritas/patología , Electroencefalografía , Exoma/genética , Femenino , Ácido Glutámico/metabolismo , Humanos , Lactante , Recién Nacido , Ketamina/uso terapéutico , Magnesio/uso terapéutico , Memantina/administración & dosificación , Memantina/uso terapéutico , Modelos Moleculares , Medicina de Precisión , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsiones/tratamiento farmacológico , Convulsiones/genética , Convulsiones/metabolismo , Espasmos Infantiles/metabolismo
4.
Neuropharmacology ; 75: 324-36, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23973313

RESUMEN

NMDA receptors are ligand-gated ion channels that assemble into tetrameric receptor complexes composed of glycine-binding GluN1 and GluN3 subunits (GluN3A-B) and glutamate-binding GluN2 subunits (GluN2A-D). NMDA receptors can assemble as GluN1/N2 receptors and as GluN3-containing NMDA receptors, which are either glutamate/glycine-activated triheteromeric GluN1/N2/N3 receptors or glycine-activated diheteromeric GluN1/N3 receptors. The glycine-binding GluN1 and GluN3 subunits display strikingly different pharmacological selectivity profiles. However, the pharmacological characterization of GluN3-containing receptors has been hampered by the lack of methods and pharmacological tools to study GluN3 subunit pharmacology in isolation. Here, we have developed a method to study the pharmacology of GluN3 subunits in recombinant diheteromeric GluN1/N3 receptors by mutating the orthosteric ligand-binding pocket in GluN1. This method is suitable for performing compound screening and characterization of structure-activity relationship studies on GluN3 ligands. We have performed a virtual screen of the orthosteric binding site of GluN3A in the search for antagonists with selectivity for GluN3 subunits. In the subsequent pharmacological evaluation of 99 selected compounds, we identified 6-hydroxy-[1,2,5]oxadiazolo[3,4-b]pyrazin-5(4H)-one (TK80) a novel competitive antagonist with preference for the GluN3B subunit. Serendipitously, we also identified [2-hydroxy-5-((4-(pyridin-3-yl)thiazol-2-yl)amino]benzoic acid (TK13) and 4-(2,4-dichlorobenzoyl)-1H-pyrrole-2-carboxylic acid (TK30), two novel non-competitive GluN3 antagonists. These findings demonstrate that structural differences between the orthosteric binding site of GluN3 and GluN1 can be exploited to generate selective ligands.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/química , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales de la Membrana/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Sitios de Unión/efectos de los fármacos , Sitios de Unión/genética , Simulación por Computador , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Glicina/farmacología , Concentración 50 Inhibidora , Potenciales de la Membrana/genética , Modelos Moleculares , Oocitos , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad , Xenopus laevis
5.
Mol Pharmacol ; 80(5): 782-95, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21807990

RESUMEN

The compound 4-(5-(4-bromophenyl)-3-(6-methyl-2-oxo-4-phenyl-1,2-dihydroquinolin-3-yl)-4,5-dihydro-1H-pyrazol-1-yl)-4-oxobutanoic acid (DQP-1105) is a representative member of a new class of N-methyl-d-aspartate (NMDA) receptor antagonists. DQP-1105 inhibited GluN2C- and GluN2D-containing receptors with IC(50) values that were at least 50-fold lower than those for recombinant GluN2A-, GluN2B-, GluA1-, or GluK2-containing receptors. Inhibition was voltage-independent and could not be surmounted by increasing concentrations of either coagonist, glutamate or glycine, consistent with a noncompetitive mechanism of action. DQP-1105 inhibited single-channel currents in excised outside-out patches without significantly changing mean open time or single-channel conductance, suggesting that DQP inhibits a pregating step without changing the stability of the open pore conformation and thus channel closing rate. Evaluation of DQP-1105 inhibition of chimeric NMDA receptors identified two key residues in the lower lobe of the GluN2 agonist binding domain that control the selectivity of DQP-1105. These data suggest a mechanism for this new class of inhibitors and demonstrate that ligands can access, in a subunit-selective manner, a new site located in the lower, membrane-proximal portion of the agonist-binding domain.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/metabolismo , Pirazoles/farmacología , Quinolonas/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Animales , Células Cultivadas , Cricetinae , ADN Complementario , Antagonistas de Aminoácidos Excitadores/química , Humanos , Técnicas de Placa-Clamp , Pirazoles/química , Quinolonas/química , Ratas , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Relación Estructura-Actividad
6.
J Pharmacol Exp Ther ; 333(3): 650-62, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20197375

RESUMEN

N-Methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca(2+)-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describe a fluorescence-based assay that measures NMDA receptor-mediated changes in intracellular calcium in a BHK-21 cell line stably expressing NMDA receptor NR2D with NR1 under the control of a tetracycline-inducible promoter (Tet-On). The assay selectively identifies allosteric modulators by using supramaximal concentrations of glutamate and glycine to minimize detection of competitive antagonists. The assay is validated by successfully identifying known noncompetitive, but not competitive NMDA receptor antagonists among 1800 screened compounds from two small focused libraries, including the commercially available library of pharmacologically active compounds. Hits from the primary screen are validated through a secondary screen that used two-electrode voltage-clamp recordings on recombinant NMDA receptors expressed in Xenopus laevis oocytes. This strategy identified several novel modulators of NMDA receptor function, including the histamine H3 receptor antagonists clobenpropit and iodophenpropit, as well as the vanilloid receptor transient receptor potential cation channel, subfamily V, member 1 (TRPV1) antagonist capsazepine. These compounds are noncompetitive antagonists and the histamine H3 receptor ligand showed submicromolar potency at NR1/NR2B NMDA receptors, which raises the possibility that compounds can be developed that act with high potency on both glutamate and histamine receptor systems simultaneously. Furthermore, it is possible that some actions attributed to histamine H3 receptor inhibition in vivo may also involve NMDA receptor antagonism.


Asunto(s)
Antagonistas de los Receptores Histamínicos H3/farmacología , Imidazoles/farmacología , Isotiuronio/análogos & derivados , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Tiourea/análogos & derivados , Compuestos de Anilina , Animales , Línea Celular , Cricetinae , Evaluación Preclínica de Medicamentos , Electrofisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Colorantes Fluorescentes , Humanos , Isotiuronio/farmacología , Microscopía Fluorescente , Oocitos/efectos de los fármacos , Técnicas de Placa-Clamp , Piperidinas/farmacología , Ensayo de Unión Radioligante , Receptores de N-Metil-D-Aspartato/biosíntesis , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/genética , Relación Estructura-Actividad , Tiourea/farmacología , Xantenos , Xenopus laevis
7.
J Physiol ; 586(1): 227-45, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17962328

RESUMEN

Heteromeric NMDARs are composed of coagonist glycine-binding NR1 subunits and glutamate-binding NR2 subunits. The majority of functional NMDARs in the mammalian central nervous system (CNS) contain two NR1 subunits and two NR2 subunits of which there are four types (A-D). We show that the potency of a variety of endogenous and synthetic glycine-site coagonists varies between recombinant NMDARs such that the highest potency is seen at NR2D-containing and the lowest at NR2A-containing NMDARs. This heterogeneity is specified by the particular NR2 subunit within the NMDAR complex since the glycine-binding NR1 subunit is common to all NMDARs investigated. To identify the molecular determinants responsible for this heterogeneity, we generated chimeric NR2A/2D subunits where we exchanged the S1 and S2 regions that form the ligand-binding domains and coexpressed these with NR1 subunits in Xenopus laevis oocytes. Glycine concentration-response curves for NMDARs containing NR2A subunits including the NR2D S1 region gave mean glycine EC(50) values similar to NR2A(WT)-containing NMDARs. However, receptors containing NR2A subunits including the NR2D S2 region or both NR2D S1 and S2 regions gave glycine potencies similar to those seen in NR2D(WT)-containing NMDARs. In particular, two residues in the S2 region of the NR2A subunit (Lys719 and Tyr735) when mutated to the corresponding residues found in the NR2D subunit influence glycine potency. We conclude that the variation in glycine potency is caused by interactions between the NR1 and NR2 ligand-binding domains that occur following agonist binding and which may be involved in the initial conformation changes that determine channel gating.


Asunto(s)
Glicina/farmacología , Oocitos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Secuencia de Aminoácidos , Animales , Quimera , Relación Dosis-Respuesta a Droga , Electrofisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Glicina/antagonistas & inhibidores , Ácido Quinurénico/análogos & derivados , Ácido Quinurénico/farmacología , Datos de Secuencia Molecular , Oocitos/efectos de los fármacos , Técnicas de Placa-Clamp , ARN Complementario/metabolismo , Ratas , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Xenopus laevis
8.
J Biol Chem ; 280(42): 35469-76, 2005 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-16103115

RESUMEN

Binding of an agonist to the 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)-propionic acid (AMPA) receptor family of the glutamate receptors (GluRs) results in rapid activation of an ion channel. Continuous application results in a non-desensitizing response for agonists like kainate, whereas most other agonists, such as the endogenous agonist (S)-glutamate, induce desensitization. We demonstrate that a highly conserved tyrosine, forming a wedge between the agonist and the N-terminal part of the bi-lobed ligand-binding site, plays a key role in the receptor kinetics as well as agonist potency and selectivity. The AMPA receptor GluR2, with mutations in Tyr-450, were expressed in Xenopus laevis oocytes and characterized in a two-electrode voltage clamp setup. The mutation GluR2(Y450A) renders the receptor highly kainate selective, and rapid application of kainate to outside-out patches induced strongly desensitizing currents. When Tyr-450 was substituted with the larger tryptophan, the (S)-glutamate desensitization is attenuated with a 10-fold increase in steady-state/peak currents (19% compared with 1.9% at the wild type). Furthermore, the tryptophan mutant was introduced into the GluR2-S1S2J ligand binding core construct and co-crystallized with kainate, and the 2.1-A x-ray structure revealed a slightly more closed ligand binding core as compared with the wild-type complex. Through genetic manipulations combined with structural and electrophysiological analysis, we report that mutations in position 450 invert the potency of two central agonists while concurrently strongly shaping the agonist efficacy and the desensitization kinetics of the AMPA receptor GluR2.


Asunto(s)
Receptores AMPA/química , Tirosina/química , Alanina/química , Animales , Sitios de Unión , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Electrofisiología , Ácido Glutámico/química , Ácido Glutámico/farmacología , Iones/química , Ácido Kaínico/química , Ácido Kaínico/farmacología , Cinética , Ligandos , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Mutagénesis , Mutación , Oocitos/metabolismo , Técnicas de Placa-Clamp , Unión Proteica , Estructura Terciaria de Proteína , ARN Complementario/metabolismo , Ratas , Receptores AMPA/metabolismo , Triptófano/química , Tirosina/genética , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA