Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 39(10): 264, 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37515608

RESUMEN

Bacterial degradation of crude oil is a promising strategy for reducing the concentration of hydrocarbons in contaminated environments. In the first part of this study, we report the enrichment of two bacterial consortia from deep sediments of the Gulf of Mexico with crude oil as the sole carbon and energy source. We conducted a comparative analysis of the bacterial community in the original sediment, assessing its diversity, and compared it to the enrichment observed after exposure to crude oil in defined cultures. The consortium exhibiting the highest hydrocarbon degradation was predominantly enriched with Rhodococcus (75%). Bacterial community analysis revealed the presence of other hydrocarbonoclastic members in both consortia. In the second part, we report the isolation of the strain Rhodococcus sp. GOMB7 with crude oil as a unique carbon source under microaerobic conditions and its characterization. This strain demonstrated the ability to degrade long-chain alkanes, including eicosane, tetracosane, and octacosane. We named this new strain Rhodococcus qingshengii GOMB7. Genome analysis revealed the presence of several genes related to aromatic compound degradation, such as benA, benB, benC, catA, catB, and catC; and five alkB genes related to alkane degradation. Although members of the genus Rhodococcus are well known for their great metabolic versatility, including the aerobic degradation of recalcitrant organic compounds such as petroleum hydrocarbons, this is the first report of a novel strain of Rhodococcus capable of degrading long-chain alkanes under microaerobic conditions. The potential of R. qingshengii GOMB7 for applications in bioreactors or controlled systems with low oxygen levels offers an energy-efficient approach for treating crude oil-contaminated water and sediments.


Asunto(s)
Petróleo , Rhodococcus , Petróleo/metabolismo , Golfo de México , Alcanos/metabolismo , Hidrocarburos/metabolismo , Rhodococcus/metabolismo , Biodegradación Ambiental
2.
World J Microbiol Biotechnol ; 30(1): 135-42, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23861040

RESUMEN

The induction of laccase isoforms in Trametes versicolor HEMIM-9 by aqueous extracts (AE) from softwood and hardwood was studied. Samples of sawdust of Pinus sp., Cedrela sp., and Quercus sp. were boiled in water to obtain AE. Different volumes of each AE were added to fungal cultures to determine the amount of AE needed for the induction experiments. Laccase activity was assayed every 24 h for 15 days. The addition of each AE (50 to 150 µl) to the fungal cultures increased laccase production compared to the control (0.42 ± 0.01 U ml(-1)). The highest laccase activities detected were 1.92 ± 0.15 U ml(-1) (pine), 1.87 ± 0.26 U ml(-1) (cedar), and 1.56 ± 0.34 U ml(-1) (oak); laccase productivities were also significantly increased. Larger volumes of any AE inhibited mycelial growth. Electrophoretic analysis revealed two laccase bands (lcc1 and lcc2) for all the treatments. However, when lcc2 was analyzed by isoelectric focusing, inducer-dependent isoform patterns composed of three (pine AE), four (oak AE), and six laccase bands (cedar AE) were observed. Thus, AE from softwood and hardwood had induction effects in T. versicolor HEMIM-9, as indicated by the increase in laccase activity and different isoform patterns. All of the enzymatic extracts were able to decolorize the dye Orange II. Dye decolorization was mainly influenced by pH. The optimum pH for decolorization was pH 5 (85%), followed by pH 7 (50%) and pH 3 (15%). No significant differences in the dye decolorizing capacity were detected between the control and the differentially induced laccase extracts (oak, pine and cedar). This could be due to the catalytic activities of isoforms with pI 5.4 and 5.8, which were detected under all induction conditions.


Asunto(s)
Activadores de Enzimas/metabolismo , Lacasa/biosíntesis , Extractos Vegetales/metabolismo , Trametes/efectos de los fármacos , Trametes/enzimología , Madera/química , Compuestos Azo/metabolismo , Bencenosulfonatos/metabolismo , Cedrus/química , Activadores de Enzimas/aislamiento & purificación , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Isoenzimas/biosíntesis , Isoenzimas/química , Isoenzimas/aislamiento & purificación , Lacasa/química , Lacasa/aislamiento & purificación , Pinus/química , Extractos Vegetales/aislamiento & purificación , Quercus/química , Temperatura
3.
Phytochemistry ; 70(17-18): 2017-22, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19815245

RESUMEN

The diterpenes ent-kaur-16-en-19-oic acid (1) and ent-beyer-15-en-19-oic acid (2) are the major constituents of a spasmolytic diterpenic mixture obtained from the roots of Viguiera hypargyrea, a Mexican medicinal plant. Microbial transformation of 1 and 2 was performed with Aspergillus niger. Two metabolites, ent-7alpha,11beta-dihydroxy-kaur-16-en-19-oic acid (4) and ent-1beta,7alpha-dihydroxy-kaur-16-en-19-oic acid (5), were isolated from the incubation of 1, and one metabolite, ent-1beta,7alpha-dihydroxy-beyer-15-en-19-oic acid (6), was isolated in high yield (40%) from 2. The structures were elucidated on the basis of spectroscopic analyses and confirmed by X-ray crystallographic studies. Compounds 1-4 and 6 and methyl ester derivatives 4a and 6a were evaluated for their ability to inhibit the electrically induced contraction of guinea-pig ileum. Compounds 1, 3, 4, 4a and 5 were significantly active. These results showed that dihydroxylation of 1 at 7beta, 11alpha-, and 1alpha, 7beta-positions resulted in a loss of potency.


Asunto(s)
Aspergillus niger/metabolismo , Asteraceae/química , Diterpenos/metabolismo , Parasimpatolíticos/farmacología , Extractos Vegetales/metabolismo , Animales , Biotransformación , Cristalografía por Rayos X , Cobayas , Hidroxilación , Íleon/efectos de los fármacos , Técnicas In Vitro , Estructura Molecular , Músculo Liso/efectos de los fármacos , Parasimpatolíticos/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Raíces de Plantas
4.
J Gen Appl Microbiol ; 54(5): 277-84, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19029769

RESUMEN

We assessed the relationship between growth profile and the extent of biodegradation of Escravos light crude oil by axenic and mixed bacteria cultures in a shake flask. Eleven petroleum-degrading bacteria were isolated by enrichment from oil-contaminated soils including, Pseudomonas effusa, Pseudomonas fluorescens, Pseudomonas cruciviae, Arthrobacter tumescens, Pseudomonas species, Pseudomonas tralucida, Alcaligenes metacaligenes, Micrococcus colpogenes, Bacillus badius, Nocardia paraffinae and Bacillus species. Specific growth rates of axenic cultures of the bacteria during degradation of Escravos light crude oil ranged between 0.0037 and 0.0505 h(-1), while that of the mixed cultures varied from 0.0144 to 0.1301 h(-1). The crude oil was biodegraded by between 28.71% and 99.01% for single cultures and between 12.38% and 91.58% for the mixed cultures. Although specific growth rate and biomass were important at the initial stages of biodegradation, there was no significant correlation between growth rate and biomass and the extent of biodegradation of Escravos light crude oil.


Asunto(s)
Medios de Cultivo , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/crecimiento & desarrollo , Bacterias Grampositivas/metabolismo , Petróleo/metabolismo , Biodegradación Ambiental , Biomasa , Bacterias Gramnegativas/clasificación , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Grampositivas/clasificación , Bacterias Grampositivas/aislamiento & purificación , Microbiología del Suelo , Contaminantes del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA