Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35163340

RESUMEN

The prevention of cardiac life-threatening ventricular fibrillation and stroke-provoking atrial fibrillation remains a serious global clinical issue, with ongoing need for novel approaches. Numerous experimental and clinical studies suggest that oxidative stress and inflammation are deleterious to cardiovascular health, and can increase heart susceptibility to arrhythmias. It is quite interesting, however, that various cardio-protective compounds with antiarrhythmic properties are potent anti-oxidative and anti-inflammatory agents. These most likely target the pro-arrhythmia primary mechanisms. This review and literature-based analysis presents a realistic view of antiarrhythmic efficacy and the molecular mechanisms of current pharmaceuticals in clinical use. These include the sodium-glucose cotransporter-2 inhibitors used in diabetes treatment, statins in dyslipidemia and naturally protective omega-3 fatty acids. This approach supports the hypothesis that prevention or attenuation of oxidative and inflammatory stress can abolish pro-arrhythmic factors and the development of an arrhythmia substrate. This could prove a powerful tool of reducing cardiac arrhythmia burden.


Asunto(s)
Fibrilación Atrial , Diabetes Mellitus Tipo 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Fibrilación Atrial/tratamiento farmacológico , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Humanos , Inflamación/tratamiento farmacológico , Estrés Oxidativo , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico
2.
Mar Drugs ; 19(12)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34940658

RESUMEN

Light pollution disturbs circadian rhythm, and this can also be deleterious to the heart by increased susceptibility to arrhythmias. Herein, we investigated if rats exposed to continuous light had altered myocardial gene transcripts and/or protein expression which affects arrhythmogenesis. We then assessed if Omacor® supplementation benefitted affected rats. Male and female spontaneously hypertensive (SHR) and normotensive Wistar rats (WR) were housed under standard 12 h/12 h light/dark cycles or exposed to 6-weeks continuous 300 lux light for 24 h. Half the rats were then treated with 200 mg/100 g b.w. Omacor®. Continuous light resulted in higher male rat vulnerability to malignant ventricular fibrillation (VF). This was linked with myocardial connexin-43 (Cx43) down-regulation and deteriorated intercellular electrical coupling, due in part to increased pro-inflammatory NF-κB and iNOS transcripts and decreased sarcoplasmic reticulum Ca2+ATPase transcripts. Omacor® treatment increased the electrical threshold to induce the VF linked with amelioration of myocardial Cx43 mRNA and Cx43 protein levels and the suppression of NF-κB and iNOS. This indicates that rat exposure to continuous light results in deleterious cardiac alterations jeopardizing intercellular Cx43 channel-mediated electrical communication, thereby increasing the risk of malignant arrhythmias. The adverse effects were attenuated by treatment with Omacor®, thus supporting its potential benefit and the relevance of monitoring omega-3 index in human populations at risk.


Asunto(s)
Arritmias Cardíacas/prevención & control , Suplementos Dietéticos , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Contaminación Lumínica , Estrés Fisiológico , Animales , Organismos Acuáticos , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/fisiopatología , Presión Sanguínea/efectos de los fármacos , Conexina 43/metabolismo , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/administración & dosificación , Ácidos Docosahexaenoicos/química , Combinación de Medicamentos , Ácido Eicosapentaenoico/administración & dosificación , Ácido Eicosapentaenoico/química , Femenino , Corazón/efectos de los fármacos , Hipertensión/complicaciones , Masculino , Ratas , Ratas Endogámicas SHR , Ratas Wistar
3.
Int J Mol Sci ; 21(2)2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31947691

RESUMEN

The arrhythmogenic potential of ß1-adrenoceptor autoantibodies (ß1-AA), as well as antiarrhythmic properties of omega-3 in heart diseases, have been reported while underlying mechanisms are poorly understood. We aimed to test our hypothesis that omega-3 (eicosapentaenoic acid-EPA, docosahexaenoic acid-DHA) may inhibit matrix metalloproteinase (MMP-2) activity to prevent cleavage of ß1-AR and formation of ß1-AA resulting in attenuation of pro-arrhythmic connexin-43 (Cx43) and protein kinase C (PKC) signaling in the diseased heart. We have demonstrated that the appearance and increase of ß1-AA in blood serum of male and female 12-month-old spontaneously hypertensive rats (SHR) was associated with an increase of inducible ventricular fibrillation (VF) comparing to normotensive controls. In contrast, supplementation of hypertensive rats with omega-3 for two months suppressed ß1-AA levels and reduced incidence of VF. Suppression of ß1-AA was accompanied by a decrease of elevated myocardial MMP-2 activity, preservation of cardiac cell membrane integrity and Cx43 topology. Moreover, omega-3 abrogated decline in expression of total Cx43 as well as its phosphorylated forms at serine 368 along with PKC-ε, while decreased pro-fibrotic PKC-δ levels in hypertensive rat heart regardless the sex. The implication of MMP-2 in the action of omega-3 was also demonstrated in cultured cardiomyocytes in which desensitization of ß1-AR due to permanent activation of ß1-AR with isoproterenol was prevented by MMP-2 inhibitor or EPA. Collectively, these data support the notion that omega-3 via suppression of ß1-AA mechanistically controlled by MMP-2 may attenuate abnormal of Cx43 and PKC-ε signaling; thus, abolish arrhythmia substrate and protect rats with an advanced stage of hypertension from malignant arrhythmias.


Asunto(s)
Antiarrítmicos/farmacología , Arritmias Cardíacas/etiología , Autoanticuerpos/inmunología , Autoantígenos/inmunología , Ácidos Grasos Omega-3/farmacología , Hipertensión/complicaciones , Receptores Adrenérgicos beta 1/inmunología , Animales , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Biomarcadores , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Conexina 43/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Ácidos Grasos Omega-3/metabolismo , Femenino , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Proteína Quinasa C-epsilon/metabolismo , Ratas , Ratas Endogámicas SHR , Sarcolema/metabolismo , Sarcolema/ultraestructura , Fibrilación Ventricular/tratamiento farmacológico , Fibrilación Ventricular/etiología , Fibrilación Ventricular/fisiopatología
4.
Mol Cell Biochem ; 454(1-2): 191-202, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30446908

RESUMEN

We aimed to explore whether specific high-sucrose intake in older female rats affects myocardial electrical coupling protein, connexin-43 (Cx43), protein kinase C (PKC) signaling, miR-1 and miR-30a expression, and susceptibility of the heart to malignant arrhythmias. Possible benefit of the supplementation with melatonin (40 µg/ml/day) and omega-3 polyunsaturated fatty acids (Omacor, 25 g/kg of rat chow) was examined as well. Results have shown that 8 weeks lasting intake of 30% sucrose solution increased serum cholesterol, triglycerides, body weight, heart weight, and retroperitoneal adipose tissues. It was accompanied by downregulation of cardiac Cx43 and PKCε signaling along with an upregulation of myocardial PKCδ and miR-30a rendering the heart prone to ventricular arrhythmias. There was a clear benefit of melatonin or omega-3 PUFA supplementation due to their antiarrhythmic effects associated with the attenuation of myocardial Cx43, PKC, and miR-30a abnormalities as well as adiposity. The potential impact of these findings may be considerable, and suggests that high-sucrose intake impairs myocardial signaling mediated by Cx43 and PKC contributing to increased susceptibility of the older obese female rat hearts to malignant arrhythmias.


Asunto(s)
Conexina 43/metabolismo , Sacarosa en la Dieta/efectos adversos , Ácidos Grasos Omega-3/farmacología , Corazón/efectos de los fármacos , Melatonina/farmacología , Obesidad/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Animales , Antiarrítmicos/metabolismo , Antiarrítmicos/farmacología , Arritmias Cardíacas/etiología , Ácidos Grasos Omega-3/metabolismo , Femenino , Melatonina/metabolismo , MicroARNs/metabolismo , Miocardio/metabolismo , Obesidad/inducido químicamente , Obesidad/complicaciones , Obesidad/metabolismo , Proteína Quinasa C-delta/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Ratas , Ratas Wistar
5.
Int J Mol Sci ; 18(11)2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29160855

RESUMEN

The purpose of this study was to investigate the effect of antioxidants rich red palm oil (RPO) supplementation on cardiac oxidative stress known as crucial factor deteriorating heart function in hypertension. 3-month-old, male spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) were fed standard rat chow without or with RPO (0.2 mL/day/5 weeks). General characteristic of rats were registered. Left ventricular tissue (LV) was used to determine expression of superoxide dismutases (SOD1, SOD2) and glutathione peroxidases (Gpx) as well as activity of nitric oxide synthase (NOS). Functional parameters of the heart were examined during basal conditions and at the early-phase of post-ischemic reperfusion using Langendorff-perfused system. RPO intake significantly reduced elevated blood pressure and total NOS activity as well as increased lowered expression of mitochondrial SOD2 in SHR hearts during basal condition. Moreover, RPO supplementation resulted in suppression of elevated heart rate, increase of reduced coronary flow and enhancement of systolic and diastolic heart function at the early-phase of post-ischemic reperfusion. It is concluded that SHR benefit from RPO intake due to decrease of blood pressure, amelioration of oxidative stress and protection of heart function that was deteriorated by post-ischemic reperfusion.


Asunto(s)
Antioxidantes/metabolismo , Corazón/efectos de los fármacos , Miocardio/metabolismo , Óxido Nítrico Sintasa/metabolismo , Aceite de Palma/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Circulación Coronaria/efectos de los fármacos , Suplementos Dietéticos , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Pruebas de Función Cardíaca , Frecuencia Cardíaca/efectos de los fármacos , Miocardio/enzimología , Ratas , Ratas Endogámicas SHR , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Glutatión Peroxidasa GPX1
6.
Nutrients ; 9(11)2017 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-29084142

RESUMEN

Omega-3 polyunsaturated fatty acids (PUFAs), namely eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are permanent subjects of interest in relation to the protection of cardiovascular health and the prevention of the incidence of both ventricular and atrial arrhythmias. The purpose of this updated review is to focus on the novel cellular and molecular effects of omega-3 PUFAs, in the context of the mechanisms and factors involved in the development of cardiac arrhythmias; to provide results of the most recent studies on the omega-3 PUFA anti-arrhythmic efficacy and to discuss the lack of the benefit in relation to omega-3 PUFA status. The evidence is in the favor of omega-3 PUFA acute and long-term treatment, perhaps with mitochondria-targeted antioxidants. However, for a more objective evaluation of the anti-arrhythmic potential of omega-3 PUFAs in clinical trials, it is necessary to monitor the basal pre-interventional omega-3 status of individuals, i.e., red blood cell content, omega-3 index and free plasma levels. In the view of evidence-based medicine, it seems to be crucial to aim to establish new approaches in the prevention of cardiac arrhythmias and associated morbidity and mortality that comes with these conditions.


Asunto(s)
Antiarrítmicos/farmacología , Ácidos Grasos Omega-3/farmacología , Animales , Arritmias Cardíacas/tratamiento farmacológico , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Humanos , Metaanálisis como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto
7.
Can J Physiol Pharmacol ; 90(9): 1235-45, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22908996

RESUMEN

The purpose of this study was to test our hypothesis that red palm oil (RPO) intake may affect abnormalities of myocardial connexin-43 (Cx43) and protein kinase Cε (PKCε) signaling, and consequently the propensity of the spontaneously hypertensive rat heart (SHR) heart to arrhythmias. SHR and Wistar-Kyoto (WKY) rats fed a standard rat chow plus red palm oil (200 µL/day) for 5 weeks were compared with untreated rats. Cytosolic but not particulate PKCε expression as well as Cx43-mRNA, total Cx43 proteins, and its phoshorylated forms were increased, and disordered localization of Cx43 was attenuated in the left ventricle of RPO-fed SHR compared with untreated rats. These alterations were associated with suppression of early post-ischemic-reperfusion-related ventricular tachycardia and electrically inducible ventricular fibrillation. However, the treatment dose of RPO caused down-regulation of myocardial Cx43, but did not alter its cell membrane distribution or overall PKCε expression in WKY rats. It was, however, associated with poor arrhythmia protection, suggesting overdosing. Results indicate that SHR benefit from RPO intake, particularly because of its apparent anti-arrhythmic effects. This protection can be, in part, attributed to the preservation of cell-to-cell communication via up-regulation of myocardial Cx43, but not with PKCε activation.


Asunto(s)
Antiarrítmicos/uso terapéutico , Arritmias Cardíacas/prevención & control , Conexina 43/biosíntesis , Hipertensión/metabolismo , Miocardio/metabolismo , Aceites de Plantas/uso terapéutico , Animales , Antiarrítmicos/administración & dosificación , Antiarrítmicos/farmacología , Arritmias Cardíacas/etiología , Arritmias Cardíacas/metabolismo , Presión Sanguínea/fisiología , Western Blotting , Hipertensión/complicaciones , Hipertensión/tratamiento farmacológico , Hipertensión/enzimología , Técnicas In Vitro , Masculino , Miocardio/enzimología , Aceite de Palma , Aceites de Plantas/administración & dosificación , Aceites de Plantas/farmacología , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Reacción en Cadena en Tiempo Real de la Polimerasa , Regulación hacia Arriba
8.
Mol Cell Biochem ; 347(1-2): 163-73, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20963625

RESUMEN

The purpose of this study is to investigate myocardial nitric oxide synthase (NOS) activity and connexin-43 (Cx43) expression in young and old spontaneously hypertensive rats (SHR), adult hereditary hypertriglyceridemic (HTG) rats, and age-matched healthy rats without and with omega-3 PUFA supplementation for 2 months. Results showed that comparing to healthy rats the myocardial NOS activity was significantly increased in young SHR (8.2 ± 1.16 vs. 1.37 ± 0.67 pmol/min/mg) as well as old SHR (3.21 ± 0.75 vs. 2.22 ± 0.56 pmol/min/mg) and to much lesser extent in HTG rats, i.e., 1.87 ± 0.42 vs. 1.34 ± 0.1 pmol/min/mg. In parallel, there was a significant decline of total and phosphorylated forms of Cx43 in both groups of SHR while not in HTG rat hearts in which phosphorylated form of Cx43 was increased. Elevated NOS activity was suppressed (P < 0.05) in young and old SHR supplemented with omega-3 PUFA and it was associated with up-regulation of Cx43. In contrast to SHR, elevation of NOS activity in HTG rat hearts was not affected by treatment with omega-3 PUFA. However, increase of phosphorylated form of Cx43 was suppressed. In conclusion, there is an inverse relationship between myocardial NOS activity and Cx43 expression in SHR while not HTG rat hearts and omega-3 PUFA modulate both NOS activity and Cx43 expression. Whether over-expression of inducible NOS might account for down-regulation of myocardial Cx43 and whether its up-regulation is associated with an increase of endothelial NOS should be explored in further study.


Asunto(s)
Conexina 43/metabolismo , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-3/farmacología , Hipertrigliceridemia/enzimología , Miocardio/enzimología , Óxido Nítrico Sintasa/metabolismo , Animales , Western Blotting , Densitometría , Técnica del Anticuerpo Fluorescente , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/enzimología , Ventrículos Cardíacos/patología , Hipertrigliceridemia/patología , Miocardio/patología , Ratas , Ratas Endogámicas SHR
9.
Can J Physiol Pharmacol ; 87(4): 252-65, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19370079

RESUMEN

Comprehensive management of patients with chronic ischemic disease is a critically important component of clinical practice. Cardiac myocytes have the potential to adapt to limited flow conditions by adjusting contractile function, reducing metabolism, conserving resources, and preserving myocardial integrity to cope with an oxygen and (or) nutrition shortage. A prime metabolic feature of cardiac myocytes affected by chronic ischemia is the return to a fetal gene pattern with predominance of carbohydrates as the substrate for energy. Structural adaptation with multiple intracellular changes is part of the remodeling process in hibernating myocardium. Transmural heterogeneity, which defines the pattern of injury in ventricular cardiomyocytes and the response to chronic ischemia, is a multifactorial process originating from functional, metabolic, and flow differences in subendocardial and subepicardial regions. Autophagy is typically activated in hibernating myocardium and has been identified as a prosurvival mechanism. Chronic ischemia is associated with changes in the number, size, and distribution of gap junctions and may give rise to conduction disturbances and arrhythmogenesis. Differentiation between viable and nonviable myocardium by assessing sensitivity of inotropic reserve is a crucial diagnostic tool that is correlated with the prognosis and outcome for improved contractility after restoration of blood perfusion in afflicted myocardium.Reliable and accurate diagnosis of ischemic, scar, and viable tissues is critical for recover strategies. Although early surgical reinstitution of blood flow is most effective in restoring physiologic function of the hibernating myocardium, several new approaches offer promising alternatives. Among others, vascular endothelial growth factor and fibroblast growth factor-2 (FGF-2), especially its lo-FGF-2 isoform, have been shown to be effective in rapid neovascularization. Substances such as statins, resveratrol, some hormones, and omega-3 fatty acids can improve recovery effect in chronically underperfused hearts. For patients with drug-refractory ischemia, intramyocardial transplantation of stem cells into predefined areas of the heart can enhance vascularization and have beneficial effects on cardiac function. This review of ischemic injury, its heterogeneity, accurate diagnosis, and newer methods of treatment, shows there is much information and tremendous hope for better management of patients with coronary heart disease.


Asunto(s)
Aturdimiento Miocárdico/fisiopatología , Animales , Calcio/metabolismo , Humanos , Aturdimiento Miocárdico/diagnóstico , Aturdimiento Miocárdico/patología , Aturdimiento Miocárdico/terapia , Miocitos Cardíacos/patología , Neovascularización Fisiológica , Trasplante de Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA