Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Life Sci Space Res (Amst) ; 26: 132-139, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32718679

RESUMEN

Successful incorporation of soil-like substrate (SLS) into biotechnical life support systems is often complicated by the necessity to maintain the balance between flows of mineral elements taken up from the substrate by growing plants and mineral elements added to the SLS as components of mineralized plant inedible biomass. An imbalance between these two flows can be caused by the addition of recalcitrant plant waste such as wheat straw. The purpose of this study was to determine whether the availability of essential nutrients to be taken up by the roots of the wheat plants grown on the SLS could be enhanced by supplementing the SLS with the products derived from wheat straw subjected to different levels of physicochemical mineralization in the aqueous solution of hydrogen peroxide. Different degrees of straw mineralization were achieved by using different ratios of the aqueous solution of hydrogen peroxide to straw. The study showed that supplementation of the SLS with insufficiently oxidized products of physicochemical mineralization of straw resulted in a decrease in the grain yields. The inhibitory effect of the straw subjected to physicochemical oxidation increased with a decrease in the degree to which the straw had been oxidized. Only supplementation with the straw mineralized to the highest possible degree did not inhibit plant growth and development, and the crop yield in that treatment was higher than in the other treatments.


Asunto(s)
Sistemas Ecológicos Cerrados , Nutrientes/metabolismo , Suelo/química , Triticum/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Triticum/crecimiento & desarrollo
2.
Life Sci Space Res (Amst) ; 18: 29-34, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30100145

RESUMEN

The present study addresses the ways to increase the closure of biotechnical life support systems (BTLSS) for space applications. A promising method of organic waste processing based on "wet combustion" in hydrogen peroxide developed at the IBP SB RAS to produce fertilizers for higher plants is discussed. The method is relatively compact, energy efficient, productive, and eco-friendly. However, about 4-6 g/L of recalcitrant sediment containing such essential nutrients as Ca, Mg, P, Fe, Cu, Mn, and Zn precipitates after the initial process. These elements are unavailable to plants grown hydroponically and, thus, drop out of the cycling as dead-end products. Possible methods of dissolving that sediment have been studied. Results of experiments show that the most promising method is additional oxidation of the sediment in HNO3 + H2O2. By using the new technological process, which only involves substances synthesized inside the BTLSS material flows, more than 90% of each nutrient can be converted into the form available to plants in irrigation solutions, thus returning them into the material cycling. The results obtained in this study show the efficacy of supplementing the irrigation solutions with the mineral nutrients after sediment dissolution. Lettuce plants grown as the test object on the newly prepared irrigation solutions produced the yield that was more than twice higher than the yield produced on the nutrient solutions prepared without the sediment conversion into a soluble form. Composition of the gases emitted during this process has been analyzed. Dynamics of oxidation of the small fractions of a wax-like sediment remaining after the initial sediment dissolution in HNO3 + H2O2 in the BTLSS soil-like substrate has been studied. The entire technological scheme aimed at the full inclusion of all human wastes into the BTLSS cycling has been suggested and discussed. A process scheme of including products of human waste processing in the biotic cycle of the BTLSS is discussed in the conclusion.


Asunto(s)
Sistemas de Manutención de la Vida , Reciclaje/métodos , Vuelo Espacial , Administración de Residuos , Residuos/análisis , Sistemas Ecológicos Cerrados , Estudios de Factibilidad , Humanos , Peróxido de Hidrógeno/química , Nitratos/química , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA