Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Chem Biol ; 30(9): 1135-1143.e5, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37421944

RESUMEN

Engineering synthetic heterotrophy is a key to the efficient bio-based valorization of renewable and waste substrates. Among these, engineering hemicellulosic pentose utilization has been well-explored in Saccharomyces cerevisiae (yeast) over several decades-yet the answer to what makes their utilization inherently recalcitrant remains elusive. Through implementation of a semi-synthetic regulon, we find that harmonizing cellular and engineering objectives are a key to obtaining highest growth rates and yields with minimal metabolic engineering effort. Concurrently, results indicate that "extrinsic" factors-specifically, upstream genes that direct flux of pentoses into central carbon metabolism-are rate-limiting. We also reveal that yeast metabolism is innately highly adaptable to rapid growth on non-native substrates and that systems metabolic engineering (i.e., functional genomics, network modeling, etc.) is largely unnecessary. Overall, this work provides an alternate, novel, holistic (and yet minimalistic) approach based on integrating non-native metabolic genes with a native regulon system.


Asunto(s)
Pentosas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Pentosas/metabolismo , Ingeniería Metabólica/métodos , Fermentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA