Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 11(1)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35052628

RESUMEN

Rosemary (Rosmarinus officinalis [family Lamiaceae]), an herb of economic and gustatory repute, is employed in traditional medicines in many countries. Rosemary contains carnosic acid (CA) and carnosol (CS), abietane-type phenolic diterpenes, which account for most of its biological and pharmacological actions, although claims have also been made for contributions of another constituent, rosmarinic acid. This review focuses on the potential applications of CA and CS for Alzheimer's disease (AD), Parkinson's disease (PD), and coronavirus disease 2019 (COVID-19), in part via inhibition of the NLRP3 inflammasome. CA exerts antioxidant, anti-inflammatory, and neuroprotective effects via phase 2 enzyme induction initiated by activation of the KEAP1/NRF2 transcriptional pathway, which in turn attenuates NLRP3 activation. In addition, we propose that CA-related compounds may serve as therapeutics against the brain-related after-effects of SARS-CoV-2 infection, termed "long-COVID." One factor that contributes to COVID-19 is cytokine storm emanating from macrophages as a result of unregulated inflammation in and around lung epithelial and endovascular cells. Additionally, neurological aftereffects such as anxiety and "brain fog" are becoming a major issue for both the pandemic and post-pandemic period. Many reports hold that unregulated NLRP3 inflammasome activation may potentially contribute to the severity of COVID-19 and its aftermath. It is therefore possible that suppression of NLRP3 inflammasome activity may prove efficacious against both acute lung disease and chronic neurological after-effects. Because CA has been shown to not only act systemically but also to penetrate the blood-brain barrier and reach the brain parenchyma to exert neuroprotective effects, we discuss the evidence that CA or rosemary extracts containing CA may represent an effective countermeasure against both acute and chronic pathological events initiated by SARS-CoV-2 infection as well as other chronic neurodegenerative diseases including AD and PD.

2.
J Mol Neurosci ; 55(2): 430-6, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24994540

RESUMEN

Low-level laser therapy (LLLT) has been used to treat inflammation, tissue healing, and repair processes. We recently reported that LLLT to the bone marrow (BM) led to proliferation of mesenchymal stem cells (MSCs) and their homing in the ischemic heart suggesting its role in regenerative medicine. The aim of the present study was to investigate the ability of LLLT to stimulate MSCs of autologous BM in order to affect neurological behavior and ß-amyloid burden in progressive stages of Alzheimer's disease (AD) mouse model. MSCs from wild-type mice stimulated with LLLT showed to increase their ability to maturate towards a monocyte lineage and to increase phagocytosis activity towards soluble amyloid beta (Aß). Furthermore, weekly LLLT to BM of AD mice for 2 months, starting at 4 months of age (progressive stage of AD), improved cognitive capacity and spatial learning, as compared to sham-treated AD mice. Histology revealed a significant reduction in Aß brain burden. Our results suggest the use of LLLT as a therapeutic application in progressive stages of AD and imply its role in mediating MSC therapy in brain amyloidogenic diseases.


Asunto(s)
Enfermedad de Alzheimer/terapia , Terapia por Luz de Baja Intensidad , Péptidos beta-Amiloides/metabolismo , Animales , Cognición , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Monocitos/citología , Monocitos/metabolismo , Fagocitosis
3.
Artículo en Inglés | MEDLINE | ID: mdl-20706642

RESUMEN

Toll-like receptors (TLRs) are known to be expressed by innate immune response cells and to play a critical role in their activation against foreign pathogens. It was recently suggested that TLRs have an important role in the crosstalk between neurons and glial cells in the central nervous system (CNS). TLR signaling was reported to be associated with a yin-yang effect in the CNS. While TLR signaling was linked to neurogenesis, it was also found to be involved in the pathogenesis of neurodegenerative diseases. This paper will focus on TLR signaling in glial cells in neurodegenerative diseases such as Alzheimer's disease, prion diseases, amyotrophic lateral sclerosis, and Parkinson's disease. Understanding the pattern of TLR signaling in the glial cells may lead to the identification of new targets for therapeutic application.


Asunto(s)
Amiloidosis , Enfermedades Neurodegenerativas , Neuroglía/metabolismo , Transducción de Señal/fisiología , Receptores Toll-Like/metabolismo , Amiloidosis/metabolismo , Amiloidosis/patología , Amiloidosis/terapia , Animales , Humanos , Inmunidad Innata/inmunología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/terapia , Neurogénesis/fisiología , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA