Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Sci Total Environ ; 827: 154341, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35257765

RESUMEN

The addition of thermally conductive nanomaterials is an effective strategy for increasing the thermal conductivity of phase change materials (PCMs). However, nanomaterials are expensive and may significantly reduce the latent heat capacity of PCMs. In this study, low-cost and eco-friendly biochar microparticles were prepared from garlic stems, a common food waste in Singapore. The thermal properties of paraffin wax (PW) doped with 1, 3, and 5 wt% garlic stem biochar (GSB) microparticles were investigated. The GSB microparticles prepared at 700 °C had three-dimensional porous and two-dimensional flake-like structures, which contributed to the formation of additional heat transfer pathways in the PW. The addition of 5 wt% GSB microparticles enhanced the thermal conductivity of PW by 27.3% and 7.2% in the solid and liquid phases, respectively. The T-history test revealed that the melting and solidification rates of PW improved by 90 and 115 s, respectively. The improved heat transfer performance was mainly ascribed to the high degree of graphitization and the interconnected porous carbon structure of the GSB microparticles. The phase change temperatures of PW were slightly changed upon the addition of GSB microparticles, and the latent heat capacity was only reduced by 6.1%. These results suggest that the GSB microparticles can be used as a potential alternative to other nanoadditives such as metal- and metal oxide-based nanoadditives.


Asunto(s)
Ajo , Eliminación de Residuos , Carbón Orgánico , Alimentos , Parafina , Conductividad Térmica
2.
Environ Pollut ; 299: 118877, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35077837

RESUMEN

The effects of catalytic hydrothermal (HT) pretreatment on animal manure followed by the addition of hydrochar on the nutrients recovery have not yet been investigated using a combination of chemical, microscopic, and spectroscopic techniques. Therefore, a catalytic HT process was employed to pretreat swine manure without additives (manure-HT) and with H2O2 addition (manure-HT- H2O2) to improve the conversion efficiency of labile or organic phosphorus (P) to inorganic phase. Then, a Ca-Al layered double hydroxide hydrochar (Ca/Al LDH@HC) derived from corn cob biomass was synthesized and applied to enhance P sorption. Scanning electron microscopy (SEM), and three-dimensional excitation emission matrix (3D-EEM), X-ray photoelectron spectroscopy (XPS), P k-edge X-ray absorption near edge structure (XANES), were used to elucidate the mechanisms of P release and capture. The H2O2 assisted HT treatment significantly enhanced the release of inorganic P (251.4 mg/L) as compared to the untreated manure (57.2 mg/L). The 3D-EEM analysis indicated that the labile or organic P was transformed and solubilized efficiently along with the deconstruction of manure components after the H2O2 assisted HT pretreatment. Application of Ca/Al LDH@HC improved the removal efficiency of P from the derived P-rich HT liquid. This sorption process was conformed to the pseudo-second-order model, suggesting that chemisorption was the primary mechanism. The results of SEM and P k-edge XANES exhibited that Ca, as the dominated metal component, could act as a reaction site for the formation of phosphate precipitation. These results provide critical findings about recovering P from manure waste, which is useful for biowastes management and nutrients utilization, and mitigating unintended P loss and potential environmental risks.


Asunto(s)
Estiércol , Fósforo , Animales , Peróxido de Hidrógeno , Estiércol/análisis , Nutrientes/análisis , Fósforo/análisis , Análisis Espectral , Porcinos
3.
J Hazard Mater ; 425: 127906, 2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-34891020

RESUMEN

Improving the recovery of organic matter and phosphorus (P) from hazardous biowastes such as swine manure using acidic substrates (ASs) in conjunction with aerobic composting is of great interest. This work aimed to investigate the effects of ASs on the humification and/or P migration as well as on microbial succession during the swine manure composting, employing multivariate and multiscale approaches. Adding ASs, derived from wood vinegar and humic acid, increased the degree of humification and thermal stability of the compost. The 31P nuclear magnetic resonance spectroscopy and X-ray absorption near-edge structure analyses demonstrated compost P was in the form of struvite crystals, Ca/Al-P phases, and Poly-P (all inorganic P species) as well as inositol hexakisphosphate and Mono-P (organophosphorus species). However, the efficiency of P recovery could be improved by generating more struvite by adding the ASs. The flows among nutrient pools resulted from the diversity in the dominant microbial communities in different composting phases after introducing the ASs and appearance of Bacillus spp. in all phases. These results demonstrate the potential value of ASs for regulating and/or improving nutrients flow during the composting of hazardous biowastes for producing higher quality compost, which may maximize their beneficial benefits and applications.


Asunto(s)
Compostaje , Animales , Sustancias Húmicas , Estiércol , Fósforo , Suelo , Porcinos
4.
Environ Res ; 202: 111635, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34242674

RESUMEN

Phosphorus (P) availability is closely related to the distributions of pH, O2 and phosphatase activities in the rhizosphere of plants growing in soils and sediments. In this study, the P uptake processes and mechanisms of Vallisneria natans (V. natans) during two vegetation periods (i.e., week three and six) were revealed using three noninvasive 2D imaging techniques: planar optode (PO), diffusive gradients in thin films (DGT) and zymography. The results showed that increased phosphatase activity, O2 concentration and root-induced acidification were observed together in the rhizosphere of root segments and tips. In week three, when V. natans was young, the flux of DGT-labile P accumulated more in the rhizosphere in comparison with the bulk sediment. This was because increased phosphatase activity (of up to 35%) and root-induced acidification (with pH decreasing by up to 0.25) enhanced P acquisition of V. natans by the third week. However, the flux of DGT-labile P turned to depletion during weeks three to six of V. natans growth, after Fe plaque formed at the matured stage. The constant hydrolysis of phosphatase and acidification could not compensate for the P demand of the roots by the sixth week. At this stage, Fe plaque become the P pool, due to P fixation with solid Fe(III) hydroxides. Subsequently, V. natans roots acquired P from Fe plaque via organic acid complexation of Fe(III).


Asunto(s)
Hydrocharitaceae , Contaminantes Químicos del Agua , Compuestos Férricos , Sedimentos Geológicos , Fósforo , Rizosfera , Suelo , Contaminantes Químicos del Agua/análisis
5.
Environ Pollut ; 284: 117129, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915395

RESUMEN

This paper proposes a holistic approach to connect anthropogenic impacts to environmental remediation solutions. The eDPSIR (engineered-Drivers-Pressures-States-Impacts-Responses) framework aims at supporting the decision-maker in designing technological solutions for a contaminated coastal area, where the natural matrices need to be cleaned up. The eDPSIR is characterized by cause-effect relationships that are operationally implemented through three multidisciplinary toolboxes: (i) Toolbox 1, to connect driving forces with pressures, classifying the state of the system and allowing the identification of target contaminants and the extent of contamination; (ii) Toolbox 2, to quantify bioaccumulation also by identifying corresponding areas; (iii) Toolbox 3, to identify the most suitable remediation solutions for previously identified contaminated areas, named contamination scenarios. The eDPSIR was calibrated on the case study of the Mar Piccolo in Taranto (Southern Italy), one of the most complex and polluted areas in Europe. While the consolidated DPSIR allows for a strategic response by limiting the use of contaminated areas or reducing upstream pressures, the eDPSIR made it possible to structure with a semi-quantitative logic the problem of assisting the decision-makers in choosing the optimal technological remediation responses for each sediment scenario of contamination (heavy metal; organic compounds; mixed). Assisted natural attenuation was identified as the best remediation technology in terms of treatment effectiveness and smallest amount of impacts involved in the project actions. However, considering the scenario of mixed contamination, in-situ reactive capping reached a good rank with a value of the composite indicator equal to 99.5%; thermal desorption and stabilization/solidification recorded a value of 94.1% and 84.6%, respectively. The application of these toolboxes provides alternative means to interpret, manage, and solve different cases of global marine contaminated sites.


Asunto(s)
Restauración y Remediación Ambiental , Metales Pesados , Europa (Continente) , Sedimentos Geológicos , Italia , Metales Pesados/análisis
6.
J Hazard Mater ; 416: 125738, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-33836326

RESUMEN

There is significant interest in the treatment of swine manure, which is a hazardous biowaste and a source of pathogenic contamination. This work investigated the effects of microorganism-mediated inoculants (MMIs) on nutrient flows related to humification or phosphorus (P) dynamics during the aerobic composting of swine manure. The impact of MMIs on microbe succession was also evaluated. The addition of MMIs had positive effects associated with nutrient flows, including thermal activation, decreases in certain fluorescence emissions, lower mass loss and variations in levels of certain elements and functional groups. MMIs altered the maturation behavior and kinetics of organic matter while improving microbial activity. Phosphorus was found in the compost in the forms of MgNH4PO4·6H2O crystals and Poly-P as the IP species, and Mono-P as the OP species in compost generated from the dissolution or inter-transformation among P pools. These nutrient flows are attributed to changes in the structure of microbial communities as a consequence of introducing MMIs. Diverse microbial compositions were identified in different composting phases, although Bacillus appeared in each phase. This work provides support for the aerobic composting of hazardous biowaste as well as an improved understanding of nutrient flows, as a means of producing higher quality compost.


Asunto(s)
Compostaje , Animales , Estiércol , Nitrógeno/análisis , Fósforo , Suelo , Porcinos
7.
Chemosphere ; 277: 130234, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33773313

RESUMEN

Cobalt (Co) cycling is often dominated by its role as a micronutrient in marine, while little is known on its cycling in a shallow eutrophic lake. Monthly sampling was performed in eutrophic Meiliang Bay of Lake Taihu, combining two laboratory control experiments and in situ Co limitation bioassay experiments. The high-resolution dialysis and the diffusive gradients in thin films technique were used to detect dissolved and labile Co, respectively. The positive correlations between dissolved/labile Co and Mn in the sediments for 6 or 7 months demonstrated that the mobility of Co in the sediments was primarily controlled by Mn redox cycling in the field. However, it is unexpected that the dissolved and labile Co only showed a small change over one year irrespective of the significant fluctuation in dissolved/labile Mn, with the concentrations being as low as 1.08 ± 0.22 µg/L and 0.246 ± 0.091 µg/L for dissolved and labile Co in the surface 20 mm sediment, respectively. Cyanobacterial bloom simulation and aerobic-anaerobic-cyanobacterial addition experiments indicated that the level of Co in the sediment-overlying water system was strongly regulated by cyanobacterial uptake, followed by the degradation of Co-enriched cyanobacterial biomass, which offset the influence of Mn redox cycling on Co mobility in the sediment. The significant enhancement of Microcystis spp. biomass by Co addition further indicated that Co was the potential limiting nutrient for cyanobacterial blooms. This work provides new ideas for better management strategies of eutrophication in shallow lakes.


Asunto(s)
Lagos , Contaminantes Químicos del Agua , China , Cobalto , Monitoreo del Ambiente , Eutrofización , Sedimentos Geológicos , Fósforo/análisis , Diálisis Renal , Contaminantes Químicos del Agua/análisis
8.
J Hazard Mater ; 407: 124402, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33189469

RESUMEN

Thallium (Tl) pollution caused by the exploitation of uranium (U) mines has long been neglected due to its low crustal abundance. However, Tl may be enriched in minerals of U ore because Tl has both sulfurophile and lithophile properties. Herein, a semi-dynamic leaching experiment combined with statistical analysis, geochemical speciation and multi-characterization provided novel insight into the distinct features and mechanisms of Tl release from uranium mill tailings (UMT). The results showed that particle size effects prevail over the pH on Tl release, and surface dissolution is the pivotal mechanism controlling Tl release based on Fick's diffusion model. The study revealed that long-term leaching and weathering can lead to the increased acid-extractable and oxidizable fractions of Tl in UMT, and that the exposure and dissolution of Tl-containing sulfides would largely enhance the flux of Tl release. The findings indicate that UMT containing (abundant) pyrite should be paid particular attention due to Tl exposure. Besides, critical concern over the potential Tl pollution in universal U mining and hydrometallurgical areas likewise may need to be seriously reconsidered.


Asunto(s)
Contaminantes Radiactivos del Suelo , Uranio , Contaminantes Radiactivos del Agua , Minería , Talio/análisis , Uranio/análisis , Contaminantes Radiactivos del Agua/análisis
9.
Sci Total Environ ; 729: 138999, 2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32498172

RESUMEN

Phosphorus (P) and nitrogen (N) recovery from swine manure has attracted considerable interest for biomass valorization. In this study, a catalytic-thermal hydrolysis (TH) process combined with struvite crystallization was investigated to promote P and N conversion from swine manure. Its potential as a phosphate-based fertilizer was investigated. Two periods for P solubilization and transformation were observed, i.e., an initial increase with reaction time followed by a decrease as treatment continued. Nitrogen conversion efficiency increased with increasing temperature and time. Treatment of swine manure by catalytic-TH with HCl + H2O2 showed the best performance for P and N solubilization and transformation. With a Mg2+/PO43- molar ratio of 2.49 and a pH of 9.11, the struvite crystallization efficiency from the supernatant after catalytic-TH with HCl + H2O2 reached 99.2%. Hydroculture bioassay showed that struvite had a positive effect on the early growth of wheat. The P concentrations in both root and shoot tissues for struvite treatment were more than two times higher than that of soluble P. These encouraging results warrant further studies on the conversion of biowaste given that recycling nutrients sources may outperform traditional synthetic fertilizers.


Asunto(s)
Estiércol , Animales , Cristalización , Peróxido de Hidrógeno , Hidrólisis , Compuestos de Magnesio , Nitrógeno , Fosfatos , Fósforo , Estruvita , Porcinos , Eliminación de Residuos Líquidos
10.
Environ Res ; 187: 109629, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32460090

RESUMEN

Trichloroethylene (TCE) is a frequently found organic contaminant in polluted-groundwater. In this microcosm study, effects of hydrogen-producing bacteria [Clostridium butyricum (Clostridium sp.)] and inhibitor of sulfate-reducing bacteria (SRB) addition on the enhancement of TCE dechlorination were evaluated. Results indicate that Clostridium sp. supplement could effectively enhance TCE reductive dechlorination (97.4% of TCE removal) due to increased hydrogen concentration and Dehalococcoides (DHC) populations (increased to 1 × 104 gene copies/L). However, addition of Clostridium sp. also caused the increase in dsrA (dissimilatory sulfide reductase subunit A) (increased to 2 × 108 gene copies/L), and thus, part of the hydrogen was consumed by SRB, which would limit the effective application of hydrogen by DHC. Control of Clostridium sp. addition is a necessity to minimize the adverse impact of Clostridium sp. on DHC growth. Ferric citrate caused the slight raise of the oxidation-reduction state, which resulted in growth inhibition of SRB. Molybdate addition inhibited the growth of SRB, and thus, the dsrA concentrations (dropped from 4 × 107 to 9 × 105 gene copies/L) and sulfate reduction efficiency were decreased. Increased DHC populations (increased from 8 × 103 to 1 × 105 gene copies/L) were due to increased available hydrogen (increased from 0 to 2 mg/L), which enhanced TCE dechlorination (99.3% TCE removal). Metagenomic analyses show that a significant microbial diversity was detected in microcosms with different treatments. Clostridium sp., ferric citrate, and molybdate addition caused a decreased SRB communities and increased fatty acid production microbial communities (increased from 4.9% to 20.2%), which would be beneficial to the hydrogen production and TCE dechlorination processes.


Asunto(s)
Tricloroetileno , Contaminantes Químicos del Agua , Bacterias , Biodegradación Ambiental , Sulfatos , Contaminantes Químicos del Agua/análisis
11.
Chemosphere ; 250: 126315, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32234624

RESUMEN

Uranium (U) is both chemically toxic and radioactive. Uranium mill tailings (UMTs) are one of the most important sources of U contamination in the environment, wherein the mechanisms that control U release from UMTs with different granularities have not yet been well understood. Herein, the release behaviours and underlying release mechanisms of U from UMTs with five different particle size fractions (<0.45, 0.45-0.9, 0.9-2, 2-6 and 6-10 mm) were studied with a well-defined leaching test (ANS 16.1) combined with geochemical and mineralogical characterizations. The results showed that the most remarkable U release unexpectedly emerged from UMT2-6 mm; in contrast, the smallest particle size UMT<0.45 mm contributed to the least U release. The predominant mechanism of U release from UMT2-6 mm was the oxidative dissolution of U-bearing sulfides, while abundant gypsum present in UMT<0.45 mm inhibited U release. The study highlights the importance of combined geochemical and mineralogical investigation when performing leaching tests of mineral-containing hazardous materials such as UMTs with consideration of particle size effects. The findings also indicate that elevating the content of gypsum and avoiding the oxidation of sulfides can effectively help immobilize and minimize the residual U release from the UMTs.


Asunto(s)
Uranio/química , Contaminantes Radiactivos del Agua/química , Sulfato de Calcio , Minerales , Tamaño de la Partícula , Radiactividad , Contaminantes Radiactivos del Suelo/análisis , Contaminantes Radiactivos del Suelo/química , Uranio/análisis , Contaminantes Radiactivos del Agua/análisis
12.
Chemosphere ; 252: 126539, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32220719

RESUMEN

Biochar is a promising agent for wastewater treatment, soil remediation, and gas storage and separation. This review summarizes recent research development on biochar production and applications with a focus on the application of biochar technology in wastewater treatment. Different technologies for biochar production, with an emphasis on pre-treatment of feedstock and post treatment, are succinctly summarized. Biochar has been extensively used as an adsorbent to remove toxic metals, organic pollutants, and nutrients from wastewater. Compared to pristine biochar, engineered/designer biochar generally has larger surface area, stronger adsorption capacity, or more abundant surface functional groups (SFG), which represents a new type of carbon material with great application prospects in various wastewater treatments. As the first of its kind, this critical review emphasizes the promising prospects of biochar technology in the treatment of various wastewater including industrial wastewater (dye, battery manufacture, and dairy wastewater), municipal wastewater, agricultural wastewater, and stormwater. Future research on engineered/designer biochar production and its field-scale application is discussed. Based on the review, it can be concluded that biochar technology represents a new, cost effective, and environmentally-friendly solution for the treatment of wastewater.


Asunto(s)
Carbón Orgánico , Eliminación de Residuos Líquidos/métodos , Adsorción , Agricultura , Contaminantes Ambientales , Suelo , Aguas Residuales
13.
Sci Total Environ ; 716: 137116, 2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-32059310

RESUMEN

The current review explores the potential application of algal biomass for the production of biofuels and bio-based products. The variety of processes and pathways through which bio-valorization of algal biomass can be performed are described in this review. Various lipid extraction techniques from algal biomass along with transesterification reactions for biodiesel production are briefly discussed. Processes such as the pretreatment and saccharification of algal biomass, fermentation, gasification, pyrolysis, hydrothermal liquefaction, and anaerobic digestion for the production of biohydrogen, bio-oils, biomethane, biochar (BC), and various bio-based products are reviewed in detail. The biorefinery model and its collaborative approach with various processes are highlighted for the production of eco-friendly, sustainable, and cost-effective biofuels and value-added products. The authors also discuss opportunities and challenges related to bio-valorization of algal biomass and use their own perspective regarding the processes involved in production and the feasibility to make algal research a reality for the production of biofuels and bio-based products in a sustainable manner.


Asunto(s)
Biocombustibles , Biomasa , Fermentación , Microalgas , Aceites de Plantas , Plantas
14.
Environ Res ; 183: 109156, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32000003

RESUMEN

The selective degradation of recalcitrant antibiotics into byproducts with low toxicity and high biodegradability has been increasingly popular using peroxymonosulfate (PMS) based advanced oxidation processes (AOPs). In this paper, two Fe-based heterogeneous catalysts, bentonite supported Fe-Ni composite (BNF) and biochar-supported Fe composite (Fe/C), were tailored and comprehensively characterized for distinctive physicochemical properties, crystalline structures, and interfacial behaviors. Two widely used antibiotics, sulfapyridine (SPY) and oxytetracycline (OTCs) at their common concentrations in pharmaceutical wastewaters (250 and 10 mg L-1) were tested for degradation in three PMS-based oxidation processes, i.e., PMS, PMS-BNF, and PMS-Fe/C, respectively. Results demonstrated that a large amount of PMS (10 and 1 mM) could effectively remove SPY (0.385 min-1, 100% removal) and OTC (2.737 min-1, 100% removal) via1O2 derived from PMS self-decomposition and non-radical pathway, respectively. Additional Fe-based catalysts (0.5 g L-1 Fe/C and BNF) significantly reduced the PMS consumption (1 and 0.25 mM) and accelerated the reaction rate (1.08 and 5.05 min-1) of SPY and OTC removal. Moreover, the supplementary catalysts shifted the degradation route. The biochar matrix in Fe/C composite contributed to predominant interaction with PMS forming 1O2, which preferably attacked SPY via hydroxylation. In contrast, the redox-active Fe-Ni pairs induced SO4- formation, which could selectively degrade OTC through decarboxylation. Thus, these results are conducive to tailoring advanced yet low-cost heterogeneous catalysts for eco-friendly treatment of antibiotics-rich industrial wastewaters.


Asunto(s)
Antibacterianos , Bentonita , Carbón Orgánico , Aguas Residuales , Purificación del Agua
15.
Environ Int ; 135: 105406, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31864033

RESUMEN

Arsenic-alkali residue (AAR) from antimony smelting is highly hazardous due to its ready leachability of As, seeking for proper disposal such as stabilization treatment. However, As stabilization in AAR would be challenging due to the high content of coexisting soluble carbonate. This study conducted the stabilization treatments of AAR by ferrous sulfate and lime, respectively, and revealed the significant influence of coexisting carbonate. It was found that ferrous sulfate was more efficient than lime, which required only one-tenth of dosages of lime to reduce the As leaching concentration from 915 mg/L to a level below 2.5 mg/L to meet the Chinese regulatory limit. The combining qualitative and quantitative analyses based on XRD, SEM-EDS, and thermodynamic modeling suggested that the formation of insoluble arsenate minerals, ferrous arsenate or calcium arsenate, was the predominant mechanism for As stabilization in the two treatment systems, and their efficiency difference was primarily attributed to the coexisting carbonate, which had a slight effect on ferrous arsenate but severely obstructed calcium arsenate formation. Moreover, the examination of As leaching concentrations in 1-year-cured samples indicated that the long-term stability of ferrous sulfate treatment was far superior to that of lime treatment. This study provides ferrous salts as a promising and green scheme for stabilization treatment of AAR as well as other similar As-bearing solid wastes with coexisting soluble carbonate.


Asunto(s)
Arsénico/análisis , Álcalis , Antimonio , Carbonatos , Residuos Sólidos
16.
J Hazard Mater ; 383: 121243, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31563764

RESUMEN

Bioretention systems, as one of the most practical management operations for low impact development of water recovery, utilize different soil amendments to remove contaminants from stormwater. For the sake of urban sustainability, the utilization of amendments derived from waste materials has a potential to reduce waste disposal at landfill while improving the quality of stormwater discharge. This study investigated the efficiency of food waste compost and wood waste biochar for metal removal from synthetic stormwater runoff under intermittent flow and co-presence of colloids. Throughout intermittent infiltration of 84 pore volumes of stormwater, columns amended with compost and biochar removed more than 50-70% of influent metals, whereas iron-oxide coated sand was much less effective. Only a small portion of metals adsorbed on the compost (< 0.74%) was reactivated during the drainage of urban pipelines that do not flow frequently, owing to abundant oxygen-containing functional groups in compost. In comparison, co-existing kaolinite enhanced metal removal by biochar owing to the abundance of active sites, whereas co-existing humic acid facilitated mobilization via metal-humate complexation. The results suggest that both waste-derived compost and biochar show promising potential for stormwater harvesting, while biochar is expected to be more recalcitrant and desirable in field-scale bioretention systems.


Asunto(s)
Compostaje , Eliminación de Residuos , Purificación del Agua , Carbón Orgánico , Ciudades , Coloides , Alimentos , Lluvia , Suelo , Crecimiento Sostenible , Abastecimiento de Agua
17.
Sci Total Environ ; 704: 135414, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-31810693

RESUMEN

Efficient conversion of food waste to value-added products necessitates the development of high-performance heterogeneous catalysts. This study evaluated the use of Al2O3 as a low-cost and abundant support material for fabricating Lewis acid catalysts, i.e., through the in-situ doping of Cu, Ni, Co, and Zr into Al2O3 followed by calcination. The characterisation results show that all catalysts were mainly amorphous. In particular, adding the transition metals to the Al2O3 matrix resulted in the increase of acidity and meso-/micro-pores. The catalysts were evaluated in the conversion of glucose, which can be easily derived from starch-rich food waste (e.g., bread waste) via hydrolysis, to fructose in biorefinery. The results indicate that the Ni-doped Al2O3 (Al-Ni-C) achieved the highest fructose yield (19 mol%) and selectivity (59 mol%) under heating at 170 °C for 20 min, of which the performance falls into the range reported in literature. In contrast, the Zr-doped Al2O3 (Al-Zr-C) presented the lowest fructose selectivity despite the highest glucose conversion, meaning that the catalyst was relatively active towards the side reactions of glucose and intermediates. The porosity and acidity, modified via metal impregnation, were deduced as the determinants of the catalytic performance. It is noteworthy that the importance of these parameters may vary in a relative sense and the limiting factor could shift from one parameter to another. Therefore, evaluating physicochemical properties as a whole, instead of the unilateral improvement of a single parameter, is encouraged to leverage each functionality for cost-effectiveness. This study provides insights into the structure-performance relationships to promote advance in catalyst design serving a sustainable food waste biorefinery.


Asunto(s)
Óxido de Aluminio/química , Alimentos , Eliminación de Residuos/métodos , Residuos , Glucosa , Concentración de Iones de Hidrógeno , Hidrólisis , Metales/química , Porosidad
18.
Environ Pollut ; 254(Pt A): 112891, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31408794

RESUMEN

The effluents from nuclear mining processes contain relatively high content of radionuclides (such as uranium), which may seriously threaten the environment and human health. Herein, a novel adsorbent, porous hydroxyapatite, was prepared and proven highly efficient for removal of uranyl ions (U(VI)) given its high U(VI) uptake capacity of 111.4 mg/g, fast adsorption kinetics, and the potential stabilization of adsorbed U(VI). A nearly complete removal of U(VI) was achieved by porous HAP under optimized conditions. Langmuir model could well describe the adsorption equilibrium. The data fit well with pseudo-second-order kinetic model, suggesting that U(VI) adsorption is primarily attributed to chemisorption with porous HAP. Intraparticle diffusion analysis showed that the intraparticle diffusion is the rate-limiting step for U(VI) adsorption by porous HAP. After removal by porous HAP, the adsorbed U(VI) ions were incorporated into tetragonal autunite, which has a low solubility (log Ksp: -48.36). Our findings demonstrate that the porous HAP can effectively remediate uranium contamination and holds great promise for environmental applications.


Asunto(s)
Durapatita/química , Minería , Uranio/química , Contaminantes Radiactivos del Agua/química , Adsorción , Difusión , Iones , Cinética , Porosidad , Uranio/análisis
19.
Environ Pollut ; 246: 472-481, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30583155

RESUMEN

Iron (Fe) and manganese (Mn) reactions have been regarded as the primary factors responsible for the mobilization of phosphorus (P) in lake sediments, although their individual roles are hard to distinguish. In this study, in situ mobilization of P, Fe and Mn in sediments was assessed by high resolution spatio-temporal sampling of their labile forms using diffusive gradient in thin films (DGT) and suction device (Rhizon) techniques. It was found that the monthly concentration distributions showed greater agreement and better correlation coefficients between labile P and labile Fe, than those between labile P and labile Mn, implying that Fe plays a key role in controlling P release in sediments. Furthermore, better correlations were observed between hourly changes in concentrations of soluble reactive phosphorus (SRP) and soluble Fe(II), than those between SRP and soluble Mn. Changes were observed under simulated anaerobic incubation conditions, suggesting that P release was caused by the reductive dissolution of Fe oxides. This was supported by the lack of influences on P release from reductive dissolution of Mn oxides in the sediment-water interface and top sediment layers under the anaerobic incubations. In simulated algal bloom experiments, positive correlations and consistent changes were observed between SRP and soluble Fe(II) concentrations, but not between SRP and soluble Mn concentrations. This further demonstrated the Fe-dependent and Mn-independent release of P in sediments. Therefore, Fe redox reactions have a high impact on P mobilization in sediments, while Mn redox reactions appear to have negligible influences.


Asunto(s)
Monitoreo del Ambiente/métodos , Floraciones de Algas Nocivas/fisiología , Hierro/análisis , Lagos/química , Manganeso/análisis , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Simulación por Computador , Sedimentos Geológicos/química , Hierro/química , Manganeso/química , Oxidación-Reducción , Óxidos/química , Fósforo/química , Agua/química , Contaminantes Químicos del Agua/química
20.
Sci Total Environ ; 697: 134115, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-32380609

RESUMEN

Uranium (U) is a toxic and radioactive element. Excessive amounts of aqueous U(VI) generated from U mining, processing and nuclear industry may result in severe and irreversible damage to the environment. Herein, Ficus microcarpa aerial root (FMAR), a biowaste material, was used to adsorb U(VI) from aqueous solutions for the first time. Potassium permanganate (KMnO4)-modified FMAR biochar was synthesised, characterised and compared with raw (unmodified) biochar with respect to U(VI) adsorption. The results showed that the adsorption capability of the modified FMAR biochar was evidently higher than that of the raw biochar. Multiple characterisation techniques confirmed that the discrepancy was mainly due to the increased content of O-H and formation of irregular sheet-like nanostructure with the ultrafine MnO2 nanoparticles on the biochar surfaces after KMnO4 modification. The abundance of O-H and nanoscale MnO2 notably enhanced the adsorption of U(VI) by means of coordination and Lewis acid-base interaction. The results indicate that KMnO4-modified FMAR biochar has a good potential to serve as an environment-friendly adsorbent for the removal of U(VI) from solution.


Asunto(s)
Carbón Orgánico , Restauración y Remediación Ambiental/métodos , Ficus , Uranio/aislamiento & purificación , Adsorción , Compuestos de Manganeso , Óxidos , Raíces de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA