Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microorganisms ; 8(12)2020 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-33322803

RESUMEN

Increasing carbapenem resistance rates worldwide underscored the urgent need of novel antimicrobials. Ceftazidime-avibactam and aztreonam-avibactam combinations are developed to combat carbapenem resistance, but biological and geographic variations must be considered for antibiotic susceptibility patterns varied. Thus, we sought to assess the susceptibilities of ceftazidime-avibactam and aztreonam-avibactam against 660 carbapenem-nonsusceptible Enterobacteriaceae isolates (472 Klebsiella pneumoniae and 188 Escherichia coli) collected during an earlier Taiwan surveillance study. Agar dilution method was used to determine ceftazidime-avibactam and aztreonam-avibactam susceptibility. Metallo-carbapenemase's contribution to resistance were investigated with EDTA addition. The in vivo efficacies were evaluated using a Caenorhabditis elegans model. High susceptibility rates were observed for ceftazidime-avibactam and aztreonam-avibactam against the 472 carbapenem-nonsusceptible K. pneumoniae (CnsKP) (85.2% and 95.3%, respectively) and 188 carbapenem-nonsusceptible E. coli (CnsEC) isolates (91.5% and 94.1%, respectively). For non-metallo-carbapenemase producers, the susceptibility rates for ceftazidime-avibactam were 93.6% for CnsKP and 97.7% for CnsEC, whereas only 7.1% CnsKP and 11.1% CnsEC in metallo-carbapenemase producers were susceptible to ceftazidime-avibactam. Of all isolates, 95.3% CnsKP and 94.1% CnsEC were susceptible to aztreonam-avibactam. In C. elegans model, ceftazidime-avibactam and aztreonam-avibactam revealed effective against a blaKPC-producing K. pneumoniae isolate in vivo. Our results propose a positive therapeutic approach for both combinations against carbapenem-nonsusceptible Enterobacteriaceae in Taiwan.

2.
Artículo en Inglés | MEDLINE | ID: mdl-27242913

RESUMEN

Pancreatic cancer is the eighth leading cause of cancer death worldwide. Patients with pancreatic cancer are normally diagnosed at an advanced stage and present poor survival rate. Ovatodiolide (OV), a bioactive macrocyclic diterpenoid isolated from Anisomeles indica, showed cytotoxicity effects in pancreatic cancer cells by inhibiting cell proliferation and inducing apoptosis. Moreover, not only were cell adhesion and invasion markedly suppressed in a dose-dependent manner, but the mRNA expression of matrix metalloproteinase-9 (MMP-9) and focal adhesion kinase (FAK) was also significantly decreased. Western blot analysis indicated that OV potently suppressed the phosphorylation of STAT-3 and its upstream kinase including ERK1/2, P38, and AKT Ser473. Meanwhile, OV inactivated the nuclear factor kappa B (NF-κB) by inhibiting IκB kinase (IKK α/ß) activation and the subsequent suppression of inhibitor of kappa B (IκB) phosphorylation. These results demonstrated that OV could potentially inhibit Mia-PaCa2 cancer cells proliferation and induce apoptosis through modulation of NF-κB and STAT3 pathway. Moreover, OV suppressed cell invasiveness and interfered with cell-matrix adhesion in Mia-PaCa2 cancer cells by reducing MMP-9 and FAK transcription through suppressing NF-κB and STAT3 pathway. Taken together, our findings reveal a new therapeutic and antimetastatic potential of ovatodiolide for pancreatic cancer remedy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA