Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Chem ; 441: 138175, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38194793

RESUMEN

Salvia officinalis L. has attracted scientific and industrial interest due to its pharmacological properties. However, its detailed phytochemical profile and its correlation with beneficial effects in the human microbiome and oxidative stress remained elusive. To unveil this, S. officinalis was collected from the region of Epirus and its molecular identity was verified with DNA barcoding. Phytochemical profile for both aqueous and ethanol-based extracts was determined by high-pressure liquid chromatography-tandem mass spectrometry and 103 phytochemicals were determined. The effect of S. officinalis extracts as functional regulators of food microbiota by stimulating the growth of Lacticaseibacillus rhamnosus strains and by suppressing evolution of pathogenic bacteria was verified. Furthermore, we recorded that both extracts exhibited a significant cellular protection against H2O2-induced DNA damage. Finally, both extracts exhibited strong inhibitory effect towards LDL oxidation. This study provides a comprehensive characterization of S. officinalis on its phytochemical components as also its potential impact in human microbiome and oxidative stress.


Asunto(s)
Salvia officinalis , Humanos , Salvia officinalis/química , Peróxido de Hidrógeno , Extractos Vegetales/química , Fitoquímicos/análisis , Antioxidantes/química
2.
Methods Mol Biol ; 1824: 371-385, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30039419

RESUMEN

Cardiovascular diseases (CVDs) are becoming major contributors to the burden of disease due to genetic and environmental factors. Despite current standard oral care, cardiovascular risk remains relatively high. A triple antiplatelet therapy with a cyclooxygenase-1 (COX-1) inhibitor, a P2Y12 receptor antagonist, and a protease-activated receptor-1 (PAR-1) antagonist has been established in the secondary prevention of atherothrombosis in patients with acute myocardial infraction and in those with peripheral artery disease. However, due to the combinatorial use of three different drugs, patients receiving this triple therapy are exposed to enhanced risk of bleeding. Conforming to polypharmacology principles, the discovery of a single compound that can simultaneously block the three platelet activation pathways (PAR-1, P2Y12, and COX-1) is of importance. Natural products have served as an inexhaustible source of bioactive compounds presenting a diverse pharmaceutical profile, including anti-inflammatory, antioxidant, anticancer, and antithrombotic activity. Indeed, principal component analysis indicated that natural products have the potential to inhibit the three aforementioned pathways, though existed reports refer to single inhibition mechanism on specific receptor(s) implicated in platelet activation. We thus set out to explore possibilities that take advantage of this potential of natural products and shape the basis to produce novel compounds that could simultaneously target PAR-1, P2Y12, and COX-1 platelet activation pathways. Polyunsaturated fatty acids (PUFAs) have multiple effects leading to improvements in blood pressure and cardiac function and arterial compliance. A promising approach to achieve the desirable goal is the bioconjugation of natural products with PUFAs. Herein, we describe the principles that should be followed to develop molecular hybrids bearing triple antiplatelet activity profile.


Asunto(s)
Plaquetas , Ciclooxigenasa 1 , Inhibidores de la Ciclooxigenasa , Ácidos Grasos Insaturados , Plasma/química , Inhibidores de Agregación Plaquetaria , Receptor PAR-1/antagonistas & inhibidores , Receptores Purinérgicos P2Y12 , Plaquetas/química , Plaquetas/metabolismo , Inhibidores de la Ciclooxigenasa/química , Inhibidores de la Ciclooxigenasa/farmacocinética , Inhibidores de la Ciclooxigenasa/farmacología , Evaluación Preclínica de Medicamentos/métodos , Estabilidad de Medicamentos , Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/farmacocinética , Ácidos Grasos Insaturados/farmacología , Humanos , Inhibidores de Agregación Plaquetaria/química , Inhibidores de Agregación Plaquetaria/farmacocinética , Inhibidores de Agregación Plaquetaria/farmacología , Antagonistas del Receptor Purinérgico P2Y/química , Antagonistas del Receptor Purinérgico P2Y/farmacocinética , Antagonistas del Receptor Purinérgico P2Y/farmacología , Receptor PAR-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA