Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nutrients ; 16(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38474797

RESUMEN

BACKGROUND: To achieve a normal nutritional status, patients suffering from phenylketonuria (PKU) are typically prescribed amino acid (AA) supplements with low or no phenylalanine (Phe) content. Studies evaluating patient preferences regarding the intake modalities of AA supplements are limited. This study aimed to collect real-world data regarding prescription adherence and intake modalities of AA supplements reported by PKU patients while monitoring metabolic control. METHODS: This cross-sectional study included 33 PKU patients (16 female and 17 male) with a mean age of 27.2 years. Questionnaires were provided to assess information on AA supplement intake, such as prescription adherence rate, frequency and timing of administration, supplement formulation, and combination with food or drinks. Plasma phenylalanine levels were monitored during the study period. RESULTS: 51.5% (n = 17) of patients reported to lay within an adherence range of 75-100%. The majority of patients consumed AA supplements twice daily, with breakfast (87.9%) and afternoon snacks (51.5%). Powder supplements were most commonly used (72.7%) and often combined with milk and/or fruit juices (45.4%). CONCLUSIONS: Despite the known concerns related to treatment compliance among PKU adolescents and adults, most of the study participants reported a high level of adherence to AA supplement prescription. The personalized dietary regimens followed by the patients included in the current study represent a treatment approach that might be worth trying in non-compliant patients.


Asunto(s)
Aminoácidos , Fenilcetonurias , Adulto , Adolescente , Humanos , Masculino , Femenino , Estudios Transversales , Aminoácidos/metabolismo , Suplementos Dietéticos , Recolección de Datos
2.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38069347

RESUMEN

Many inherited metabolic disorders (IMDs), including disorders of amino acid, fatty acid, and carbohydrate metabolism, are treated with a dietary reduction or exclusion of certain macronutrients, putting one at risk of a reduced intake of micronutrients. In this review, we aim to provide available evidence on the most common micronutrient deficits related to specific dietary approaches and on the management of their deficiency, in the meanwhile discussing the main critical points of each nutritional supplementation. The emerging concepts are that a great heterogeneity in clinical practice exists, as well as no univocal evidence on the most common micronutrient abnormalities. In phenylketonuria, for example, micronutrients are recommended to be supplemented through protein substitutes; however, not all formulas are equally supplemented and some of them are not added with micronutrients. Data on pyridoxine and riboflavin status in these patients are particularly scarce. In long-chain fatty acid oxidation disorders, no specific recommendations on micronutrient supplementation are available. Regarding carbohydrate metabolism disorders, the difficult-to-ascertain sugar content in supplementation formulas is still a matter of concern. A ketogenic diet may predispose one to both oligoelement deficits and their overload, and therefore deserves specific formulations. In conclusion, our overview points out the lack of unanimous approaches to micronutrient deficiencies, the need for specific formulations for IMDs, and the necessity of high-quality studies, particularly for some under-investigated deficits.


Asunto(s)
Enfermedades Metabólicas , Oligoelementos , Humanos , Dieta , Suplementos Dietéticos , Micronutrientes/uso terapéutico , Enfermedades Metabólicas/tratamiento farmacológico , Ácidos Grasos
3.
JIMD Rep ; 63(4): 276-291, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35822092

RESUMEN

In this report, we describe the case of an 11-year-old boy, who came to our attention for myalgia and muscle weakness, associated with inappetence and vomiting. Hypertransaminasemia was also noted, with ultrasound evidence of hepatomegaly. Biochemical investigations revealed acylcarnitine and organic acid profiles resembling those seen in MADD, that is, multiple acyl-CoA dehydrogenase deficiencies (OMIM #231680) a rare inherited disorder of fatty acids, amino acids, and choline metabolism. The patient carried a single pathogenetic variant in the ETFDH gene (c.524G>A, p.Arg175His) and no pathogenetic variant in the riboflavin (Rf) homeostasis related genes (SLC52A1, SLC52A2, SLC52A3, SLC25A32, FLAD1). Instead, compound heterozygosity was found in the ACAD8 gene (c.512C>G, p.Ser171Cys; c.822C>A, p.Asn274Lys), coding for isobutyryl-CoA dehydrogenase (IBD), whose pathogenic variants are associated to IBD deficiency (OMIM #611283), a rare autosomal recessive disorder of valine catabolism. The c.822C>A was never previously described in a patient. Subsequent further analyses of Rf homeostasis showed reduced levels of flavins in plasma and altered FAD-dependent enzymatic activities in erythrocytes, as well as a significant reduction in the level of the plasma membrane Rf transporter 2 in erythrocytes. The observed Rf/flavin scarcity in this patient, possibly associated with a decreased ETF:QO efficiency might be responsible for the observed MADD-like phenotype. The patient's clinical picture improved after supplementation of Rf, l-carnitine, Coenzyme Q10, and also 3OH-butyrate. This report demonstrates that, even in the absence of genetic defects in genes involved in Rf homeostasis, further targeted molecular analysis may reveal secondary and possibly treatable biochemical alterations in this pattern.

4.
Molecules ; 27(11)2022 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35684429

RESUMEN

Mitochondrial diseases (MDs) may result from mutations affecting nuclear or mitochondrial genes, encoding mitochondrial proteins, or non-protein-coding mitochondrial RNA. Despite the great variability of affected genes, in the most severe cases, a neuromuscular and neurodegenerative phenotype is observed, and no specific therapy exists for a complete recovery from the disease. The most used treatments are symptomatic and based on the administration of antioxidant cocktails combined with antiepileptic/antipsychotic drugs and supportive therapy for multiorgan involvement. Nevertheless, the real utility of antioxidant cocktail treatments for patients affected by MDs still needs to be scientifically demonstrated. Unfortunately, clinical trials for antioxidant therapies using α-tocopherol, ascorbate, glutathione, riboflavin, niacin, acetyl-carnitine and coenzyme Q have met a limited success. Indeed, it would be expected that the employed antioxidants can only be effective if they are able to target the specific mechanism, i.e., involving the central and peripheral nervous system, responsible for the clinical manifestations of the disease. Noteworthily, very often the phenotypes characterizing MD patients are associated with mutations in proteins whose function does not depend on specific cofactors. Conversely, the administration of the antioxidant cocktails might determine the suppression of endogenous oxidants resulting in deleterious effects on cell viability and/or toxicity for patients. In order to avoid toxicity effects and before administering the antioxidant therapy, it might be useful to ascertain the blood serum levels of antioxidants and cofactors to be administered in MD patients. It would be also worthwhile to check the localization of mutations affecting proteins whose function should depend (less or more directly) on the cofactors to be administered, for estimating the real need and predicting the success of the proposed cofactor/antioxidant-based therapy.


Asunto(s)
Antioxidantes , Enfermedades Mitocondriales , Medicina de Precisión , Anticonvulsivantes/uso terapéutico , Antioxidantes/uso terapéutico , ADN Mitocondrial/genética , Humanos , Mitocondrias/metabolismo , Enfermedades Mitocondriales/tratamiento farmacológico , Proteínas Mitocondriales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA