Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 4311, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33619312

RESUMEN

DNA-free genome editing was used to induce mutations in one or two branching enzyme genes (Sbe) in tetraploid potato to develop starch with an increased amylose ratio and elongated amylopectin chains. By using ribonucleoprotein (RNP) transfection of potato protoplasts, a mutation frequency up to 72% was achieved. The large variation of mutations was grouped as follows: Group 1 lines with all alleles of Sbe1 mutated, Group 2 lines with all alleles of Sbe1 as well as two to three alleles of Sbe2 mutated and Group 3 lines having all alleles of both genes mutated. Starch from lines in Group 3 was found to be essentially free of amylopectin with no detectable branching and a chain length (CL) distribution where not only the major amylopectin fraction but also the shortest amylose chains were lost. Surprisingly, the starch still formed granules in a low-ordered crystalline structure. Starch from lines of Group 2 had an increased CL with a higher proportion of intermediate-sized chains, an altered granule phenotype but a crystalline structure in the granules similar to wild-type starch. Minor changes in CL could also be detected for the Group 1 starches when studied at a higher resolution.


Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano/genética , Enzima Ramificadora de 1,4-alfa-Glucano/metabolismo , Amilosa/metabolismo , Mutagénesis , Solanum tuberosum/enzimología , Solanum tuberosum/genética , Almidón/metabolismo , Alelos , Amilosa/química , Biomasa , Sistemas CRISPR-Cas , Edición Génica , Genotipo , Espectroscopía de Resonancia Magnética , Mutación , Fenotipo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Polimerizacion
2.
J Exp Bot ; 69(8): 1913-1924, 2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29538769

RESUMEN

The importance of a plastidial soluble inorganic pyrophosphatase (psPPase) and an ATP/ADP translocator (NTT) for starch composition and tuber formation in potato (Solanum tuberosum) was evaluated by individual and simultaneous down-regulation of the corresponding endogenous genes. Starch and amylose content of the transgenic lines were considerably lower, and granule size substantially smaller, with down-regulation of StpsPPase generating the most pronounced effects. Single-gene down-regulation of either StpsPPase or StNTT resulted in increased tuber numbers per plant and higher fresh weight yield. In contrast, when both genes were inhibited simultaneously, some lines developed only a few, small and distorted tubers. Analysis of metabolites revealed altered amounts of sugar intermediates, and a substantial increase in ADP-glucose content of the StpsPPase lines. Increased amounts of intermediates of vitamin C biosynthesis were also observed. This study suggests that hydrolysis of pyrophosphate (PPi) by action of a psPPase is vital for functional starch accumulation in potato tubers and that no additional mechanism for consuming, hydrolysing, or exporting PPi exists in the studied tissue. Additionally, it demonstrates that functional PPi hydrolysis in combination with efficient ATP import is essential for tuber formation and development.


Asunto(s)
Pirofosfatasa Inorgánica/metabolismo , Translocasas Mitocondriales de ADP y ATP/metabolismo , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/crecimiento & desarrollo , Plastidios/enzimología , Solanum tuberosum/enzimología , Almidón/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Regulación de la Expresión Génica de las Plantas , Pirofosfatasa Inorgánica/genética , Translocasas Mitocondriales de ADP y ATP/genética , Proteínas de Plantas/genética , Tubérculos de la Planta/enzimología , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo , Plastidios/genética , Solanum tuberosum/genética , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/metabolismo
3.
Physiol Plant ; 164(4): 378-384, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29572864

RESUMEN

Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein-9 (CRISPR-Cas9) can be used as an efficient tool for genome editing in potato (Solanum tuberosum). From both a scientific and a regulatory perspective, it is beneficial if integration of DNA in the potato genome is avoided. We have implemented a DNA-free genome editing method, using delivery of CRISPR-Cas9 ribonucleoproteins (RNPs) to potato protoplasts, by targeting the gene encoding a granule bound starch synthase (GBSS, EC 2.4.1.242). The RNP method was directly implemented using previously developed protoplast isolation, transfection and regeneration protocols without further adjustments. Cas9 protein was preassembled with RNA produced either synthetically or by in vitro transcription. RNP with synthetically produced RNA (cr-RNP) induced mutations, i.e. indels, at a frequency of up to 9%, with all mutated lines being transgene-free. A mutagenesis frequency of 25% of all regenerated shoots was found when using RNP with in vitro transcriptionally produced RNA (IVT-RNP). However, more than 80% of the shoots with confirmed mutations had unintended inserts in the cut site, which was in the same range as when using DNA delivery. The inserts originated both from DNA template remnants from the in vitro transcription, and from chromosomal potato DNA. In 2-3% of the regenerated shoots from the RNP-experiments, mutations were induced in all four alleles resulting in a complete knockout of the GBSS enzyme function.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Ribonucleoproteínas/genética , Solanum tuberosum/genética , Protoplastos/metabolismo
4.
Plant Cell Rep ; 36(1): 117-128, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27699473

RESUMEN

KEY MESSAGE: Altered starch quality with full knockout of GBSS gene function in potato was achieved using CRISPR-Cas9 technology, through transient transfection and regeneration from isolated protoplasts. Site-directed mutagenesis (SDM) has shown great progress in introducing precisely targeted mutations. Engineered CRISPR-Cas9 has received increased focus compared to other SDM techniques, since the method is easily adapted to different targets. Here, we demonstrate that transient application of CRISPR-Cas9-mediated genome editing in protoplasts of tetraploid potato (Solanum tuberosum) yielded mutations in all four alleles in a single transfection, in up to 2 % of regenerated lines. Three different regions of the gene encoding granule-bound starch synthase (GBSS) were targeted under different experimental setups, resulting in mutations in at least one allele in 2-12 % of regenerated shoots, with multiple alleles mutated in up to 67 % of confirmed mutated lines. Most mutations resulted in small indels of 1-10 bp, but also vector DNA inserts of 34-236 bp were found in 10 % of analysed lines. No mutations were found in an allele diverging one bp from a used guide sequence, verifying similar results found in other plants that high homology between guide sequence and target region near the protospacer adjacent motif (PAM) site is essential. To meet the challenge of screening large numbers of lines, a PCR-based high-resolution fragment analysis method (HRFA) was used, enabling identification of multiple mutated alleles with a resolution limit of 1 bp. Full knockout of GBSS enzyme activity was confirmed in four-allele mutated lines by phenotypic studies of starch. One remaining wild-type (WT) allele was shown sufficient to maintain enough GBSS enzyme activity to produce significant amounts of amylose.


Asunto(s)
Alelos , Sistemas CRISPR-Cas/genética , Mutagénesis/genética , Protoplastos/metabolismo , Solanum tuberosum/genética , Tetraploidía , Secuencia de Bases , Técnicas de Genotipaje , Mutación/genética , Fenotipo , Regeneración , Reproducibilidad de los Resultados , Almidón/metabolismo , Transfección
5.
Plant Biotechnol J ; 14(9): 1883-98, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26914183

RESUMEN

Tuber and root crops virtually exclusively accumulate storage products in the form of carbohydrates. An exception is yellow nutsedge (Cyperus esculentus) in which tubers have the capacity to store starch and triacylglycerols (TAG) in roughly equal amounts. This suggests that a tuber crop can efficiently handle accumulation of energy dense oil. From a nutritional as well as economic aspect, it would be of interest to utilize the high yield capacity of tuber or root crops for oil accumulation similar to yellow nutsedge. The transcription factor WRINKLED1 from Arabidopsis thaliana, which in seed embryos induce fatty acid synthesis, has been shown to be a major factor for oil accumulation. WRINKLED1 was expressed in potato (Solanum tuberosum) tubers to explore whether this factor could impact tuber metabolism. This study shows that a WRINKLED1 transcription factor could induce triacylglycerol accumulation in tubers of transformed potato plants grown in field (up to 12 nmol TAG/mg dry weight, 1% of dry weight) together with a large increase in polar membrane lipids. The changes in metabolism further affected starch accumulation and composition concomitant with massive increases in sugar content.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Solanum tuberosum/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Metabolismo de los Hidratos de Carbono/genética , Metabolismo de los Hidratos de Carbono/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Tubérculos de la Planta/genética , Plantas Modificadas Genéticamente/genética , Solanum tuberosum/genética , Factores de Transcripción/genética
6.
BMC Plant Biol ; 14: 104, 2014 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-24758347

RESUMEN

BACKGROUND: Starch is the predominant storage compound in underground plant tissues like roots and tubers. An exception is sugar beet tap-root (Beta vulgaris ssp altissima) which exclusively stores sucrose. The underlying mechanism behind this divergent storage accumulation in sugar beet is currently not fully known. From the general presence of starch in roots and tubers it could be speculated that the lack in sugar beet tap-roots would originate from deficiency in pathways leading to starch. Therefore with emphasis on starch accumulation, we studied tap-roots of sugar beet using parsnip (Pastinaca sativa) as a comparator. RESULTS: Metabolic and structural analyses of sugar beet tap-root confirmed sucrose as the exclusive storage component. No starch granules could be detected in tap-roots of sugar beet or the wild ancestor sea beet (Beta vulgaris ssp. maritima). Analyses of parsnip showed that the main storage component was starch but tap-root tissue was also found to contain significant levels of sugars. Surprisingly, activities of four main starch biosynthetic enzymes, phosphoglucomutase, ADP-glucose pyrophosphorylase, starch synthase and starch branching enzyme, were similar in sugar beet and parsnip tap-roots. Transcriptional analysis confirmed expression of corresponding genes. Additionally, expression of genes involved in starch accumulation such as for plastidial hexose transportation and starch tuning functions could be determined in tap-roots of both plant species. CONCLUSION: Considering underground storage organs, sugar beet tap-root upholds a unique property in exclusively storing sucrose. Lack of starch also in the ancestor sea beet indicates an evolved trait of biological importance.Our findings in this study show that gene expression and enzymatic activity of main starch biosynthetic functions are present in sugar beet tap-root during storage accumulation. In view of this, the complete lack of starch in sugar beet tap-roots is enigmatic.


Asunto(s)
Beta vulgaris/enzimología , Beta vulgaris/genética , Vías Biosintéticas/genética , Genes de Plantas , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Almidón/biosíntesis , Beta vulgaris/citología , Biomasa , Ritmo Circadiano , Regulación de la Expresión Génica de las Plantas , Pastinaca/citología , Pastinaca/genética , Hojas de la Planta/citología , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA