Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Proc Biol Sci ; 290(2008): 20231348, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37817599

RESUMEN

An ecological paradigm predicts that plant species adapted to low resource availability grow slower and live longer than those adapted to high resource availability when growing together. We tested this by using hierarchical Bayesian analysis to quantify variations in growth and mortality of ca 40 000 individual trees from greater than 400 species in response to limiting resources in the tropical forests of Panama. In contrast to theoretical expectations of the growth-mortality paradigm, we find that tropical tree species restricted to low-phosphorus soils simultaneously achieve faster growth rates and lower mortality rates than species restricted to high-phosphorus soils. This result demonstrates that adaptation to phosphorus limitation in diverse plant communities modifies the growth-mortality trade-off, with important implications for understanding long-term ecosystem dynamics.


Asunto(s)
Ecosistema , Fósforo , Fósforo/metabolismo , Suelo , Teorema de Bayes , Clima Tropical , Bosques , Plantas
2.
Environ Sci Technol ; 56(13): 9196-9219, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35675210

RESUMEN

Phytate (myo-inositol hexakisphosphate salts) can constitute a large fraction of the organic P in soils. As a more recalcitrant form of soil organic P, up to 51 million metric tons of phytate accumulate in soils annually, corresponding to ∼65% of the P fertilizer application. However, the availability of phytate is limited due to its strong binding to soils via its highly-phosphorylated inositol structure, with sorption capacity being ∼4 times that of orthophosphate in soils. Phosphorus (P) is one of the most limiting macronutrients for agricultural productivity. Given that phosphate rock is a finite resource, coupled with the increasing difficulty in its extraction and geopolitical fragility in supply, it is anticipated that both economic and environmental costs of P fertilizer will greatly increase. Therefore, optimizing the use of soil phytate-P can potentially enhance the economic and environmental sustainability of agriculture production. To increase phytate-P availability in the rhizosphere, plants and microbes have developed strategies to improve phytate solubility and mineralization by secreting mobilizing agents including organic acids and hydrolyzing enzymes including various phytases. Though we have some understanding of phytate availability and phytase activity in soils, the limiting steps for phytate-P acquisition by plants proposed two decades ago remain elusive. Besides, the relative contribution of plant- and microbe-derived phytases, including those from mycorrhizas, in improving phytate-P utilization is poorly understood. Hence, it is important to understand the processes that influence phytate-P acquisition by plants, thereby developing effective molecular biotechnologies to enhance the dynamics of phytate in soil. However, from a practical view, phytate-P acquisition by plants competes with soil P fixation, so the ability of plants to access stable phytate must be evaluated from both a plant and soil perspective. Here, we summarize information on phytate availability in soils and phytate-P acquisition by plants. In addition, agronomic approaches and biotechnological strategies to improve soil phytate-P utilization by plants are discussed, and questions that need further investigation are raised. The information helps to better improve phytate-P utilization by plants, thereby reducing P resource inputs and pollution risks to the wider environment.


Asunto(s)
6-Fitasa , Ácido Fítico , 6-Fitasa/química , 6-Fitasa/metabolismo , Fertilizantes , Fosfatos , Fósforo , Ácido Fítico/metabolismo , Plantas/metabolismo , Suelo/química
3.
FEMS Microbiol Ecol ; 97(4)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33609120

RESUMEN

The Haast chronosequence in New Zealand is an ∼6500-year dune formation series, characterized by rapid podzol development, phosphorus (P) depletion and a decline in aboveground biomass. We examined bacterial and fungal community composition within mineral soil fractions using amplicon-based high-throughput sequencing (Illumina MiSeq). We targeted bacterial non-specific acid (class A, phoN/phoC) and alkaline (phoD) phosphomonoesterase genes and quantified specific genes and transcripts using real-time PCR. Soil bacterial diversity was greatest after 4000 years of ecosystem development and associated with an increased richness of phylotypes and a significant decline in previously dominant taxa (Firmicutes and Proteobacteria). Soil fungal communities transitioned from predominantly Basidiomycota to Ascomycota along the chronosequence and were most diverse in 290- to 392-year-old soils, coinciding with maximum tree basal area and organic P accumulation. The Bacteria:Fungi ratio decreased amid a competitive and interconnected soil community as determined by network analysis. Overall, soil microbial communities were associated with soil changes and declining P throughout pedogenesis and ecosystem succession. We identified an increased dependence on organic P mineralization, as found by the profiled acid phosphatase genes, soil acid phosphatase activity and function inference from predicted metagenomes (PICRUSt2).


Asunto(s)
Microbiota , Suelo , Nueva Zelanda , Fósforo/análisis , Microbiología del Suelo
4.
mBio ; 11(5)2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33109755

RESUMEN

Phosphorus (P) is an essential nutrient that is often in limited supply, with P availability constraining biomass production in many terrestrial ecosystems. Despite decades of work on plant responses to P deficiency and the importance of soil microbes to terrestrial ecosystem processes, how soil microbes respond to, and cope with, P deficiencies remains poorly understood. We studied 583 soils from two independent sample sets that each span broad natural gradients in extractable soil P and collectively represent diverse biomes, including tropical forests, temperate grasslands, and arid shrublands. We paired marker gene and shotgun metagenomic analyses to determine how soil bacterial and archaeal communities respond to differences in soil P availability and to detect corresponding shifts in functional attributes. We identified microbial taxa that are consistently responsive to extractable soil P, with those taxa found in low P soils being more likely to have traits typical of oligotrophic life history strategies. Using environmental niche modeling of genes and gene pathways, we found an enriched abundance of key genes in low P soils linked to the carbon-phosphorus (C-P) lyase and phosphonotase degradation pathways, along with key components of the high-affinity phosphate-specific transporter (Pst) and phosphate regulon (Pho) systems. Taken together, these analyses suggest that catabolism of phosphonates is an important strategy used by bacteria to scavenge phosphate in P-limited soils. Surprisingly, these same pathways are important for bacterial growth in P-limited marine waters, highlighting the shared metabolic strategies used by both terrestrial and marine microbes to cope with P limitation.


Asunto(s)
Bacterias/metabolismo , Fósforo/metabolismo , Microbiología del Suelo , Bacterias/clasificación , Ecosistema , Bosques , Metagenoma , Metagenómica , Consorcios Microbianos , Nitrógeno/metabolismo
5.
Ecology ; 101(8): e03090, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32329055

RESUMEN

Soil phosphorus (P) availability in lowland tropical rainforests influences the distribution and growth of tropical tree species. Determining the P-acquisition strategies of tropical tree species could therefore yield insight into patterns of tree ß-diversity across edaphic gradients. In particular, the synthesis of root phosphatases is likely to be of significance given that organic P represents a large pool of potentially available P in tropical forest soils. It has also been suggested that a high root phosphatase activity in putative nitrogen (N) -fixing legumes might explain their high abundance in lowland neotropical forests under low P supply. Here, we measured phosphomonoesterase (PME) activity on the first three root orders of co-occurring tropical tree species differing in their N-fixation capacity, growing on soils of contrasting P availability in Panama. Our results show that root PME activity was higher on average in P-poor than in P-rich soils, but that local variation in PME activity among co-occurring species within a site was larger than that explained by differences in soil P across sites. Legumes expressed higher PME activity than nonlegumes, but nodulated legumes (i.e., actively fixing nitrogen) did not differ from legumes without nodules, indicating that PME activity is unrelated to N fixation. Finally, PME activity declined with increasing root order, but the magnitude of the decline varied markedly among species, highlighting the importance of classifying fine roots into functional groups prior to measuring root traits. Our results support the hypothesis that low-P promotes a high root PME activity, although the high local variation in this trait among co-occurring species points toward a high functional diversity in P-acquisition strategies within an individual community.


Asunto(s)
Árboles , Clima Tropical , Bosques , Nitrógeno , Panamá , Monoéster Fosfórico Hidrolasas , Fósforo , Raíces de Plantas , Suelo
6.
Environ Sci Technol ; 54(4): 2257-2267, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31922406

RESUMEN

Sequential chemical extraction has been widely used to study soil phosphorus (P) dynamics and inform nutrient management, but its efficacy for assigning P into biologically meaningful pools remains unknown. Here, we evaluated the accuracy of the modified Hedley extraction scheme using P K-edge X-ray absorption near-edge structure (XANES) spectroscopy for nine carbonate-free soil samples with diverse chemical and mineralogical properties resulting from different degrees of soil development. For most samples, the extraction markedly overestimated the pool size of calcium-bound P (Ca-P, extracted by 1 M HCl) due to (1) P redistribution during the alkaline extractions (0.5 M NaHCO3 and then 0.1 M NaOH), creating new Ca-P via formation of Ca phosphates between NaOH-desorbed phosphate and exchangeable Ca2+ and/or (2) dissolution of poorly crystalline Fe and Al oxides by 1 M HCl, releasing P occluded by these oxides into solution. The first mechanism may occur in soils rich in well-crystallized minerals and exchangeable Ca2+ regardless of the presence or absence of CaCO3, whereas the second mechanism likely operates in soils rich in poorly crystalline Fe and Al minerals. The overestimation of Ca-P simultaneously caused underestimation of the pools extracted by the alkaline solutions. Our findings identify key edaphic parameters that remarkably influenced the extractions, which will strengthen our understanding of soil P dynamics using this widely accepted procedure.


Asunto(s)
Contaminantes del Suelo , Suelo , Minerales , Fosfatos , Fósforo , Espectroscopía de Absorción de Rayos X
7.
Rapid Commun Mass Spectrom ; 34(7): e8647, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31671472

RESUMEN

RATIONALE: The isotopic composition of oxygen bound to phosphorus (δ18 OP value) offers an opportunity to gain insight into P cycling mechanisms. However, there is little information for tropical forest soils, which presents a challenge for δ18 OP measurements due to low available P concentrations. Here we report the use of a rapid ammonium fluoride extraction method (Bray-1) as an alternative to the widely used anion-exchange membrane (AEM) method for quantification of δ18 OP values of available P in tropical forest soils. METHODS: We compared P concentrations and δ18 OP values of available and microbial P determined by AEM and Bray-1 extraction for a series of tropical forest soils from Panama spanning a steep P gradient. This involved an assessment of the influence of extraction conditions, including temperature, extraction time, fumigation time and solution-to-soil ratio, on P concentrations and isotope ratios. RESULTS: Depending on the extraction conditions, Bray-1 P concentrations ranged from 0.2 to 66.3 mg P kg-1 across the soils. Extraction time and temperature had only minor effects on Bray-1 P, but concentrations increased markedly as the solution-to-soil ratio increased. In contrast, extraction conditions did not affect Bray-1 δ18 OP values, indicating that Bray-1 provides a robust measure of the isotopic composition of available soil P. For a relatively high P soil, available and fumigation-released (microbial) δ18 OP values determined by Bray-1 extraction (20‰ and 16‰, respectively) were higher than those determined by the AEM method (18‰ and 12‰, respectively), which we attribute to slightly different P pools extracted by the two methods and/or differences resulting from the longer extraction time needed for the AEM method. CONCLUSIONS: The short extraction time, insensitivity to extraction conditions and smaller mass of soil required to extract sufficient P for isotopic analysis make Bray-1extraction a suitable alternative to the AEM method for the determination of δ18 OP values of available P in tropical soils.


Asunto(s)
Compuestos de Amonio/química , Fluoruros/química , Isótopos de Oxígeno/análisis , Fósforo/análisis , Suelo/química , Algoritmos , Monitoreo del Ambiente/métodos , Bosques , Espectrometría de Masas/métodos , Clima Tropical
8.
J Eukaryot Microbiol ; 66(5): 757-770, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30793409

RESUMEN

Myxomycetes (plasmodial slime molds) are abundant protist predators that feed on bacteria and other microorganisms, thereby playing important roles in terrestrial nutrient cycling. Despite their significance, little is known about myxomycete communities and the extent to which they are affected by nutrient availability. We studied the influence of long-term addition of N, P, and K on the myxomycete community in a lowland forest in the Republic of Panama. In a previous study, microbial biomass increased with P but not N or K addition at this site. We hypothesized that myxomycetes would increase in abundance in response to P but that they would not respond to the sole addition of N or K. Moist chamber cultures of leaf litter and small woody debris were used to quantify myxomycete abundance. We generated the largest myxomycete dataset (3,381 records) for any single locality in the tropics comprised by 91 morphospecies. In line with our hypothesis, myxomycete abundance increased in response to P addition but did not respond to N or K. Community composition was unaffected by nutrient treatments. This work represents one of very few large-scale and long-term field studies to include a heterotrophic protist highlighting the feasibility and value in doing so.


Asunto(s)
Mixomicetos/metabolismo , Ecosistema , Bosques , Mixomicetos/crecimiento & desarrollo , Nitrógeno/metabolismo , Nutrientes/metabolismo , Panamá , Fósforo/metabolismo , Hojas de la Planta/parasitología , Potasio/metabolismo , Suelo/parasitología , Madera/parasitología
9.
Ecol Lett ; 21(10): 1486-1495, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30073753

RESUMEN

A fundamental biogeochemical paradox is that nitrogen-rich tropical forests contain abundant nitrogen-fixing trees, which support a globally significant tropical carbon sink. One explanation for this pattern holds that nitrogen-fixing trees can overcome phosphorus limitation in tropical forests by synthesizing phosphatase enzymes to acquire soil organic phosphorus, but empirical evidence remains scarce. We evaluated whether nitrogen fixation and phosphatase activity are linked across 97 trees from seven species, and tested two hypotheses for explaining investment in nutrient strategies: trading nitrogen-for-phosphorus or balancing nutrient demand. Both strategies varied across species but were not explained by nitrogen-for-phosphorus trading or nutrient balance. This indicates that (1) studies of these nutrient strategies require broad sampling within and across species, (2) factors other than nutrient trading must be invoked to resolve the paradox of tropical nitrogen fixation, and (3) nitrogen-fixing trees cannot provide a positive nitrogen-phosphorus-carbon feedback to alleviate nutrient limitation of the tropical carbon sink.


Asunto(s)
Fijación del Nitrógeno , Bosque Lluvioso , Árboles , Nitrógeno , Nutrientes , Monoéster Fosfórico Hidrolasas , Fósforo , Suelo , Especificidad de la Especie , Clima Tropical
10.
ISME J ; 12(10): 2433-2445, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29899509

RESUMEN

Improved understanding of the nutritional ecology of arbuscular mycorrhizal (AM) fungi is important in understanding how tropical forests maintain high productivity on low-fertility soils. Relatively little is known about how AM fungi will respond to changes in nutrient inputs in tropical forests, which hampers our ability to assess how forest productivity will be influenced by anthropogenic change. Here we assessed the influence of long-term inorganic and organic nutrient additions and nutrient depletion on AM fungi, using two adjacent experiments in a lowland tropical forest in Panama. We characterised AM fungal communities in soil and roots using 454-pyrosequencing, and quantified AM fungal abundance using microscopy and a lipid biomarker. Phosphorus and nitrogen addition reduced the abundance of AM fungi to a similar extent, but affected community composition in different ways. Nutrient depletion (removal of leaf litter) had a pronounced effect on AM fungal community composition, affecting nearly as many OTUs as phosphorus addition. The addition of nutrients in organic form (leaf litter) had little effect on any AM fungal parameter. Soil AM fungal communities responded more strongly to changes in nutrient availability than communities in roots. This suggests that the 'dual niches' of AM fungi in soil versus roots are structured to different degrees by abiotic environmental filters, and biotic filters imposed by the plant host. Our findings indicate that AM fungal communities are fine-tuned to nutrient regimes, and support future studies aiming to link AM fungal community dynamics with ecosystem function.


Asunto(s)
Bosques , Micorrizas/efectos de los fármacos , Nitrógeno/farmacología , Fósforo/farmacología , Ecosistema , Fertilizantes , Hongos/fisiología , Micorrizas/fisiología , Nitrógeno/química , Nutrientes , Panamá , Fósforo/química , Hojas de la Planta , Raíces de Plantas/microbiología , Plantas , Suelo , Microbiología del Suelo
11.
Nature ; 555(7696): 367-370, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29513656

RESUMEN

Phosphorus availability is widely assumed to limit primary productivity in tropical forests, but support for this paradigm is equivocal. Although biogeochemical theory predicts that phosphorus limitation should be prevalent on old, strongly weathered soils, experimental manipulations have failed to detect a consistent response to phosphorus addition in species-rich lowland tropical forests. Here we show, by quantifying the growth of 541 tropical tree species across a steep natural phosphorus gradient in Panama, that phosphorus limitation is widespread at the level of individual species and strengthens markedly below a threshold of two parts per million exchangeable soil phosphate. However, this pervasive species-specific phosphorus limitation does not translate into a community-wide response, because some species grow rapidly on infertile soils despite extremely low phosphorus availability. These results redefine our understanding of nutrient limitation in diverse plant communities and have important implications for attempts to predict the response of tropical forests to environmental change.


Asunto(s)
Bosques , Fósforo/metabolismo , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Clima Tropical , Cambio Climático , Humedad , Panamá , Fosfatos/metabolismo , Resinas de Plantas/metabolismo , Suelo/química , Especificidad de la Especie , Árboles/clasificación , Agua/metabolismo
12.
Ecology ; 99(5): 1129-1138, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29460277

RESUMEN

We present a meta-analysis of plant responses to fertilization experiments conducted in lowland, species-rich, tropical forests. We also update a key result and present the first species-level analyses of tree growth rates for a 15-yr factorial nitrogen (N), phosphorus (P), and potassium (K) experiment conducted in central Panama. The update concerns community-level tree growth rates, which responded significantly to the addition of N and K together after 10 yr of fertilization but not after 15 yr. Our experimental soils are infertile for the region, and species whose regional distributions are strongly associated with low soil P availability dominate the local tree flora. Under these circumstances, we expect muted responses to fertilization, and we predicted species associated with low-P soils would respond most slowly. The data did not support this prediction, species-level tree growth responses to P addition were unrelated to species-level soil P associations. The meta-analysis demonstrated that nutrient limitation is widespread in lowland tropical forests and evaluated two directional hypotheses concerning plant responses to N addition and to P addition. The meta-analysis supported the hypothesis that tree (or biomass) growth rate responses to fertilization are weaker in old growth forests and stronger in secondary forests, where rapid biomass accumulation provides a nutrient sink. The meta-analysis found no support for the long-standing hypothesis that plant responses are stronger for P addition and weaker for N addition. We do not advocate discarding the latter hypothesis. There are only 14 fertilization experiments from lowland, species-rich, tropical forests, 13 of the 14 experiments added nutrients for five or fewer years, and responses vary widely among experiments. Potential fertilization responses should be muted when the species present are well adapted to nutrient-poor soils, as is the case in our experiment, and when pest pressure increases with fertilization, as it does in our experiment. The statistical power and especially the duration of fertilization experiments conducted in old growth, tropical forests might be insufficient to detect the slow, modest growth responses that are to be expected.


Asunto(s)
Bosques , Clima Tropical , Nitrógeno , Panamá , Fósforo , Suelo , Árboles
13.
Nat Ecol Evol ; 2(3): 499-509, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29358607

RESUMEN

Phosphorus is a scarce nutrient in many tropical ecosystems, yet how soil microbial communities cope with growth-limiting phosphorus deficiency at the gene and protein levels remains unknown. Here, we report a metagenomic and metaproteomic comparison of microbial communities in phosphorus-deficient and phosphorus-rich soils in a 17-year fertilization experiment in a tropical forest. The large-scale proteogenomics analyses provided extensive coverage of many microbial functions and taxa in the complex soil communities. A greater than fourfold increase in the gene abundance of 3-phytase was the strongest response of soil communities to phosphorus deficiency. Phytase catalyses the release of phosphate from phytate, the most recalcitrant phosphorus-containing compound in soil organic matter. Genes and proteins for the degradation of phosphorus-containing nucleic acids and phospholipids, as well as the decomposition of labile carbon and nitrogen, were also enhanced in the phosphorus-deficient soils. In contrast, microbial communities in the phosphorus-rich soils showed increased gene abundances for the degradation of recalcitrant aromatic compounds, transformation of nitrogenous compounds and assimilation of sulfur. Overall, these results demonstrate the adaptive allocation of genes and proteins in soil microbial communities in response to shifting nutrient constraints.


Asunto(s)
Archaea/fisiología , Fenómenos Fisiológicos Bacterianos , Fertilizantes/análisis , Metagenoma , Fósforo/administración & dosificación , Microbiología del Suelo , Suelo/química , Archaea/genética , Fenómenos Fisiológicos Bacterianos/genética , Bosques , Panamá , Proteogenómica , Clima Tropical
14.
Environ Pollut ; 226: 212-218, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28432964

RESUMEN

Phytate is abundant in soils, which is stable and unavailable for plant uptake. However, it occurs in root exudates of As-hyperaccumulator Pteris vittata (PV). To elucidate its effect on As uptake and growth, P. vittata were grown on agar media (63 µM P) containing 50 µM As and/or 50 or 500 µM phytate with non As-hyperaccumulator Pteris ensiformis (PE) as a congeneric control for 60 d. Phytate induced efficient As and P uptake, and enhanced growth in PV, but had little effects on PE. The As concentrations in PV fronds and roots were 157 and 31 mg kg-1 in As50+phytate50, 2.2- and 3.1-fold that of As50 treatment. Phosphorus uptake by PV was reduced by 27% in As treatment than the control (P vs. P+As) but increased by 73% comparing phytate500 to phytate500+As, indicating that PV effectively took up P from phytate. Neither As nor phytate affected Fe accumulation in PV, but phytate reduced root Fe concentration in PE (46-56%). As such, the increased As and P and the unsuppressed Fe uptake in PV probably promoted PV growth. Thus, supplying phytate to As-contaminated soils may promote As uptake and growth in PV and its phytoremediation ability.


Asunto(s)
Arsénico/metabolismo , Ácido Fítico/metabolismo , Pteris/fisiología , Contaminantes del Suelo/metabolismo , Arsénico/análisis , Biodegradación Ambiental , Fósforo , Desarrollo de la Planta/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Suelo , Contaminantes del Suelo/análisis
15.
Proc Biol Sci ; 284(1848)2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28148744

RESUMEN

The majority of terrestrial plants associate with arbuscular mycorrhizal (AM) fungi, which typically facilitate the uptake of limiting mineral nutrients by plants in exchange for plant carbon. However, hundreds of non-photosynthetic plant species-mycoheterotrophs-depend entirely on AM fungi for carbon as well as mineral nutrition. Mycoheterotrophs can provide insight into the operation and regulation of AM fungal relationships, but little is known about the factors, fungal or otherwise, that affect mycoheterotroph abundance and distribution. In a lowland tropical forest in Panama, we conducted the first systematic investigation into the influence of abiotic factors on the abundance and distribution of mycoheterotrophs, to ask whether the availability of nitrogen and phosphorus altered the occurrence of mycoheterotrophs and their AM fungal partners. Across a natural fertility gradient spanning the isthmus of Panama, and also in a long-term nutrient-addition experiment, mycoheterotrophs were entirely absent when soil exchangeable phosphate concentrations exceeded 2 mg P kg-1 Experimental phosphorus addition reduced the abundance of AM fungi, and also reduced the abundance of the specific AM fungal taxa required by the mycoheterotrophs, suggesting that the phosphorus sensitivity of mycoheterotrophs is underpinned by the phosphorus sensitivity of their AM fungal hosts. The soil phosphorus concentration of 2 mg P kg-1 also corresponds to a marked shift in tree community composition and soil phosphatase activity across the fertility gradient, suggesting that our findings have broad ecological significance.


Asunto(s)
Bosques , Micorrizas , Fósforo/análisis , Plantas/microbiología , Clima Tropical , Panamá , Raíces de Plantas , Suelo/química
16.
New Phytol ; 215(4): 1425-1437, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27870067

RESUMEN

Our objective was to analyze and summarize data describing photosynthetic parameters and foliar nutrient concentrations from tropical forests in Panama to inform model representation of phosphorus (P) limitation of tropical forest productivity. Gas exchange and nutrient content data were collected from 144 observations of upper canopy leaves from at least 65 species at two forest sites in Panama, differing in species composition, rainfall and soil fertility. Photosynthetic parameters were derived from analysis of assimilation rate vs internal CO2 concentration curves (A/Ci ), and relationships with foliar nitrogen (N) and P content were developed. The relationships between area-based photosynthetic parameters and nutrients were of similar strength for N and P and robust across diverse species and site conditions. The strongest relationship expressed maximum electron transport rate (Jmax ) as a multivariate function of both N and P, and this relationship was improved with the inclusion of independent data on wood density. Models that estimate photosynthesis from foliar N would be improved only modestly by including additional data on foliar P, but doing so may increase the capability of models to predict future conditions in P-limited tropical forests, especially when combined with data on edaphic conditions and other environmental drivers.


Asunto(s)
Modelos Biológicos , Nitrógeno/análisis , Fósforo/análisis , Fotosíntesis , Hojas de la Planta/química , Clima Tropical , Madera/química , Dióxido de Carbono/metabolismo , Bosques , Panamá , Análisis de Regresión , Ribulosa-Bifosfato Carboxilasa/metabolismo , Especificidad de la Especie , Árboles/metabolismo
17.
New Phytol ; 212(2): 400-8, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27282142

RESUMEN

Soils influence tropical forest composition at regional scales. In Panama, data on tree communities and underlying soils indicate that species frequently show distributional associations to soil phosphorus. To understand how these associations arise, we combined a pot experiment to measure seedling responses of 15 pioneer species to phosphorus addition with an analysis of the phylogenetic structure of phosphorus associations of the entire tree community. Growth responses of pioneers to phosphorus addition revealed a clear tradeoff: species from high-phosphorus sites grew fastest in the phosphorus-addition treatment, while species from low-phosphorus sites grew fastest in the low-phosphorus treatment. Traits associated with growth performance remain unclear: biomass allocation, phosphatase activity and phosphorus-use efficiency did not correlate with phosphorus associations; however, phosphatase activity was most strongly down-regulated in response to phosphorus addition in species from high-phosphorus sites. Phylogenetic analysis indicated that pioneers occur more frequently in clades where phosphorus associations are overdispersed as compared with the overall tree community, suggesting that selection on phosphorus acquisition and use may be strongest for pioneer species with high phosphorus demand. Our results show that phosphorus-dependent growth rates provide an additional explanation for the regional distribution of tree species in Panama, and possibly elsewhere.


Asunto(s)
Fósforo/farmacología , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Clima Tropical , Biomasa , Fosfoproteínas Fosfatasas/metabolismo , Filogenia , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Plantones/efectos de los fármacos , Especificidad de la Especie , Árboles/efectos de los fármacos
18.
Trends Plant Sci ; 20(2): 83-90, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25466977

RESUMEN

Plants that deploy a phosphorus (P)-mobilising strategy based on the release of carboxylates tend to have high leaf manganese concentrations ([Mn]). This occurs because the carboxylates mobilise not only soil inorganic and organic P, but also a range of micronutrients, including Mn. Concentrations of most other micronutrients increase to a small extent, but Mn accumulates to significant levels, even when plants grow in soil with low concentrations of exchangeable Mn availability. Here, we propose that leaf [Mn] can be used to select for genotypes that are more efficient at acquiring P when soil P availability is low. Likewise, leaf [Mn] can be used to screen for belowground functional traits related to nutrient-acquisition strategies among species in low-P habitats.


Asunto(s)
Manganeso/metabolismo , Fósforo/metabolismo , Fenómenos Fisiológicos de las Plantas/genética , Suelo/química , Ácidos Carboxílicos/metabolismo , Ecosistema , Genotipo , Hojas de la Planta/metabolismo
19.
New Phytol ; 196(4): 1098-1108, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22937909

RESUMEN

Proteaceae species in south-western Australia occur on severely phosphorus (P)-impoverished soils. They have very low leaf P concentrations, but relatively fast rates of photosynthesis, thus exhibiting extremely high photosynthetic phosphorus-use-efficiency (PPUE). Although the mechanisms underpinning their high PPUE remain unknown, one possibility is that these species may be able to replace phospholipids with nonphospholipids during leaf development, without compromising photosynthesis. For six Proteaceae species, we measured soil and leaf P concentrations and rates of photosynthesis of both young expanding and mature leaves. We also assessed the investment in galactolipids, sulfolipids and phospholipids in young and mature leaves, and compared these results with those on Arabidopsis thaliana, grown under both P-sufficient and P-deficient conditions. In all Proteaceae species, phospholipid levels strongly decreased during leaf development, whereas those of galactolipids and sulfolipids strongly increased. Photosynthetic rates increased from young to mature leaves. This shows that these species extensively replace phospholipids with nonphospholipids during leaf development, without compromising photosynthesis. A considerably less pronounced shift was observed in A. thaliana. Our results clearly show that a low investment in phospholipids, relative to nonphospholipids, offers a partial explanation for a high photosynthetic rate per unit leaf P in Proteaceae adapted to P-impoverished soils.


Asunto(s)
Galactolípidos/metabolismo , Lípidos , Fósforo/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Proteaceae/metabolismo , Suelo , Arabidopsis/crecimiento & desarrollo , Lípidos/análisis , Lípidos/química , Fósforo/análisis , Fósforo/deficiencia , Fotosíntesis , Hojas de la Planta/metabolismo , Suelo/análisis , Australia del Sur , Australia Occidental
20.
Environ Sci Technol ; 46(9): 4775-82, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22423890

RESUMEN

Phosphorus sequestration in wetland soils is a prerequisite for long-term maintenance of water quality in downstream aquatic systems, but can be compromised if phosphorus is released following changes in nutrient status or hydrological regimen. The association of phosphorus with relatively refractory natural organic matter (e.g., humic substances) might protect soil phosphorus from such changes. Here we used hydrofluoric acid (HF) pretreatment to remove phosphorus associated with metals or anionic sorption sites, allowing us to isolate a pool of phosphorus associated with the soil organic fraction. Solution (31)P and solid state (13)C NMR spectra for wetland soils were acquired before and after hydrofluoric acid pretreatment to assess quantitatively and qualitatively the changes in phosphorus and carbon functional groups. Organic phosphorus was largely unaffected by HF treatment in soils dominated by refractory alkyl and aromatic carbon groups, indicating association of organic phosphorus with stable, humified soil organic matter. Conversely, a considerable decrease in organic phosphorus following HF pretreatment was detected in soils where O-alkyl groups represented the major fraction of the soil carbon. These correlations suggest that HF treatment can be used as a method to distinguish phosphorus fractions that are bound to the inorganic soil components from those fractions that are stabilized by incorporation into soil organic matter.


Asunto(s)
Compuestos Orgánicos/química , Compuestos de Fósforo/química , Fósforo/química , Suelo/análisis , Humedales , Ácido Fluorhídrico , Espectroscopía de Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA