Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Bot ; 70(1): 217-230, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30312429

RESUMEN

The shoot system of pines contains abundant resin ducts, which harbor oleoresins that play important roles in constitutive and inducible defenses. In a pilot study, we assessed the chemical diversity of oleoresins obtained from mature tissues of loblolly pine trees (Pinus taeda L.). Building on these data sets, we designed experiments to assess oleoresin biosynthesis in needles of 2-year-old saplings. Comparative transcriptome analyses of single cell types indicated that genes involved in the biosynthesis of oleoresins are significantly enriched in isolated epithelial cells of resin ducts, compared with those expressed in mesophyll cells. Simulations using newly developed genome-scale models of epithelial and mesophyll cells, which incorporate our data on oleoresin yield and composition as well as gene expression patterns, predicted that heterotrophic metabolism in epithelial cells involves enhanced levels of oxidative phosphorylation and fermentation (providing redox and energy equivalents). Furthermore, flux was predicted to be more evenly distributed across the metabolic network of mesophyll cells, which, in contrast to epithelial cells, do not synthesize high levels of specialized metabolites. Our findings provide novel insights into the remarkable specialization of metabolism in epithelial cells.


Asunto(s)
Pinus taeda/metabolismo , Extractos Vegetales/biosíntesis , Proteínas de Plantas/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Genes de Plantas , Proyectos Piloto , Extractos Vegetales/química , Hojas de la Planta/metabolismo
2.
Plant Biotechnol J ; 11(1): 2-22, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22979959

RESUMEN

Glandular trichomes are anatomical structures specialized for the synthesis of secreted natural products. In this review we focus on the description of glands that accumulate terpenoid essential oils and oleoresins. We also provide an in-depth account of the current knowledge about the biosynthesis of terpenoids and secretion mechanisms in the highly specialized secretory cells of glandular trichomes, and highlight the implications for metabolic engineering efforts.


Asunto(s)
Aceites Volátiles/metabolismo , Células Vegetales/metabolismo , Epidermis de la Planta/metabolismo , Epidermis de la Planta/ultraestructura , Extractos Vegetales/biosíntesis , Terpenos/metabolismo , Biotecnología
3.
Proc Natl Acad Sci U S A ; 108(41): 16944-9, 2011 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-21963983

RESUMEN

Peppermint (Mentha × piperita L.) was transformed with various gene constructs to evaluate the utility of metabolic engineering for improving essential oil yield and composition. Oil yield increases were achieved by overexpressing genes involved in the supply of precursors through the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway. Two-gene combinations to enhance both oil yield and composition in a single transgenic line were assessed as well. The most promising results were obtained by transforming plants expressing an antisense version of (+)-menthofuran synthase, which is critical for adjusting the levels of specific undesirable oil constituents, with a construct for the overexpression of the MEP pathway gene 1-deoxy-D-xylulose 5-phosphate reductoisomerase (up to 61% oil yield increase over wild-type controls with low levels of the undesirable side-product (+)-menthofuran and its intermediate (+)-pulegone). Elite transgenic lines were advanced to multiyear field trials, which demonstrated consistent oil yield increases of up to 78% over wild-type controls and desirable effects on oil composition under commercial growth conditions. The transgenic expression of a gene encoding (+)-limonene synthase was used to accumulate elevated levels of (+)-limonene, which allows oil derived from transgenic plants to be recognized during the processing of commercial formulations containing peppermint oil. Our study illustrates the utility of metabolic engineering for the sustainable agricultural production of high quality essential oils at a competitive cost.


Asunto(s)
Mentha piperita/química , Aceites de Plantas/aislamiento & purificación , Isomerasas Aldosa-Cetosa/genética , Isomerasas Aldosa-Cetosa/metabolismo , Secuencia de Bases , Biomarcadores/análisis , Ciclohexenos/análisis , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Cartilla de ADN/genética , Genes de Plantas , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , Limoneno , Mentha piperita/genética , Mentha piperita/metabolismo , Ingeniería Metabólica/métodos , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Aceites de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Terpenos/análisis
4.
Proc Natl Acad Sci U S A ; 105(8): 2818-23, 2008 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-18287058

RESUMEN

The integration of mathematical modeling and experimental testing is emerging as a powerful approach for improving our understanding of the regulation of metabolic pathways. In this study, we report on the development of a kinetic mathematical model that accurately simulates the developmental patterns of monoterpenoid essential oil accumulation in peppermint (Mentha x piperita). This model was then used to evaluate the biochemical processes underlying experimentally determined changes in the monoterpene pathway under low ambient-light intensities, which led to an accumulation of the branchpoint intermediate (+)-pulegone and the side product (+)-menthofuran. Our simulations indicated that the environmentally regulated changes in monoterpene profiles could only be explained when, in addition to effects on biosynthetic enzyme activities, as yet unidentified inhibitory effects of (+)-menthofuran on the branchpoint enzyme pulegone reductase (PR) were assumed. Subsequent in vitro analyses with recombinant protein confirmed that (+)-menthofuran acts as a weak competitive inhibitor of PR (K(i) = 300 muM). To evaluate whether the intracellular concentration of (+)-menthofuran was high enough for PR inhibition in vivo, we isolated essential oil-synthesizing secretory cells from peppermint leaves and subjected them to steam distillations. When peppermint plants were grown under low-light conditions, (+)-menthofuran was selectively retained in secretory cells and accumulated to very high levels (up to 20 mM), whereas under regular growth conditions, (+)-menthofuran levels remained very low (<400 muM). These results illustrate the utility of iterative cycles of mathematical modeling and experimental testing to elucidate the mechanisms controlling flux through metabolic pathways.


Asunto(s)
Vías Biosintéticas/fisiología , Mentha piperita/química , Modelos Teóricos , Monoterpenos/metabolismo , Aceites de Plantas/química , Biología de Sistemas/métodos , Simulación por Computador , Monoterpenos Ciclohexánicos , Cinética , Estructura Molecular , Monoterpenos/análisis , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA