Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Malar J ; 22(1): 97, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932389

RESUMEN

BACKGROUND: Malaria, a treatable disease mainly caused by Plasmodium falciparum has remained a health challenge in Africa, a continent that accounted for 96% of total global cases and deaths in 2021. Uganda, a malaria endemic country is experiencing malaria parasite resistance to some of the drugs used in the artemisinin-based combination therapy (ACT). In an effort to prioritize herbal medicines for new product development, this review synthesized the available safety and efficacy literature on the Ugandan anti-malarial plants to suggest most effective herbal plants. METHODS: Literature was exhaustively searched using engines and databases, such as Google scholar, Pubmed, and Scopus-indexed journals during the period of June 2020-December 2021. In the first phase, information on ethnobotanical uses of anti-malarial plants in Uganda was gathered and synthetized to generate a list of plants, followed by data on anti-malarial efficacy (both in vitro and in vivo) on each listed plant. Minimum inhibitory concentrations (µg/ml), and % parasite suppression for every plant were scored using The Research Initiative on Traditional and Antimalarial Methods (RITAM) scoring system. The best twenty (20) plants were evaluated for acute safety (LD50) data in rat model, plant parts used, ease of cultivation, presence of clinical studies and other relevant factors for suggesting the best three (3) plants for future anti-malarial product development. RESULTS: Over one hundred twenty-six (126) plant species are used in Uganda for treatment of malaria in local communities. Out of these, about 33% (41) have been studied for efficacy and safety, with Artemisia annua and Vernonia amygdalina being the most extensively studied and among the best twenty (20) anti-malarial plants in Uganda. Both are limited by parasite recrudescence in clinical studies. Microglossa pyrifolia, a very potent plant (IC50 = 0.03 - 0.05 µg/ml has potential to penetrate the liver and could ameliorate the challenge of recrudescence if combined with A. annua and V. amygdalina in a polyherbal formulation. CONCLUSION: There are many plants with promising potential for malaria treatment in Uganda and a herbal combination of A. annua, V. amydalina and M. pyrifolia could offer the next herbal ACT if carefully studied and developed.


Asunto(s)
Antimaláricos , Malaria , Plantas Medicinales , Ratas , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Uganda , Malaria/tratamiento farmacológico , Malaria/parasitología , Fitoterapia
2.
J Exp Pharmacol ; 14: 185-193, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35698475

RESUMEN

Background: Physalis peruviana L. (Solanaceae) is a plant widely used in traditional medicine systems to manage various diseases, including diabetes mellitus, which remains a global health problem in developing and developed countries. This study aimed to scientifically evaluate its antidiabetic bioactivity and short-term toxicity in rats. Methods: We prepared various doses (100, 200, 400 mg/kg) of aqueous and methanolic leaf extracts for the antidiabetic study, and a dose of 2000 mg/Kg was prepared for the acute toxicity test. The first group that evaluated the hypoglycemic effect consisted of forty normoglycemic Wistar rats aged 7-8 months old with a weighted average of 265.8 ± 24.6 g. The second group consisted of intraperitoneal glucose-loaded male animals to evaluate the antihyperglycemic effect. The third group contained two groups of normoglycemic female rats (n = 3), aged 3 and 4 months old (weight average: 187.45 ± 14.82 g), treated for 14 days with aqueous and methanolic extracts (2 g/kg b.w) to assess mortality and toxic effects. Blood samples were taken at 30, 60, 90, and 120 min post-treatment in hypoglycemic and antihyperglycemic evaluations. Glibenclamide (5 mg/kg) was used as a reference drug. The control animals in each group did not receive the extracts. Results: In hypoglycemic rats, 100 mg/kg of aqueous and methanolic extracts significantly lowered the fasting blood glucose level by 13.92% (p < 0.0001) and 21.95% (p < 0.01), respectively, compared to the control group. In glucose tolerance test group, methanolic extracts significantly reduced hyperglycemia by 54.55% (p < 0.0001), 46.50% (p < 0.0001), 39.78% (p < 0.0001) at 400, 200 and 100 mg/kg b.w, respectively, compared to control; aqueous extract 400 mg/kg reduced hyperglycemia by 39.44% (p < 0.05). At the 2000 mg/kg dose, leaf aqueous and methanolic extracts did not show any signs of intoxication and mortality. Conclusion: Crude aqueous and methanolic leaf extracts of P. peruviana ambrosioides appeared safe at 2000 mg/kg and have bioactivity in controlling the blood glucose levels, supporting their use in treating diabetes.

3.
J Exp Pharmacol ; 14: 139-148, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35502164

RESUMEN

Background: Diabetes mellitus is a metabolic disorder that poses a major global health threat. The current diabetes mellitus uses insulin and oral hypoglycemic agents, which have limitations, including adverse effects and secondary failures. Herbal medicine is being evaluated for its role in the pharmacotherapy of diabetes. This study was aimed to assess the anti-diabetic potential and short-term toxicity level of Chenopodium ambrosioides collected from Bukavu in Democratic Republic of Congo. Methods: Leaves of C. ambrosioides were extracted by infusion and maceration with distilled water and 95% methanol, respectively. Hypoglycemic and antihyperglycemic potentials of the aqueous and methanolic were investigated in normoglycemic and intraperitoneal glucose-loaded rats at 100, 200, and 400 mg/kg body weight. An oral acute toxicity test was carried out on healthy female Wistar rats. Results: Acute toxicity test showed the mean lethal dose (LD50) for both aqueous and methanol extracts of C. ambrosioides to be more than 2000 mg/kg. The group treated with glibenclamide (5 mg/kg b.w) and aqueous extract of the plant (200 mg/kg b.w) showed a significant reduction (p< 0.0001 and p< 0.05) of fasting blood glucose by 46.91% and 16.72%, respectively, compared to control and all other treatment groups. In acute conditions, a single oral administration of the aqueous and methanolic extracts lowered fasting blood glucose in rats. Any manifestation and signs of toxicity and mortality have been recorded for 14 days of observation. Conclusion: Leaf aqueous and methanolic extracts of C. ambrosioides appeared safe at 2000 mg/kg. The plant demonstrated some anti-diabetic potential in rats, explaining its use as an anti-diabetic remedy locally.

4.
Front Pharmacol ; 12: 757090, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34776975

RESUMEN

Several studies have been conducted and published on medicinal plants used to manage Diabetes Mellitus worldwide. It is of great interest to review available studies from a country or a region to resort to similarities/discrepancies and data quality. Here, we examined data related to ethnopharmacology and bioactivity of antidiabetic plants used in the Democratic Republic of Congo. Data were extracted from Google Scholar, Medline/PubMed, Scopus, ScienceDirect, the Wiley Online Library, Web of Science, and other documents focusing on ethnopharmacology, pharmacology, and phytochemistry antidiabetic plants used in the Democratic Republic of Congo from 2005 to September 2021. The Kew Botanic Royal Garden and Plants of the World Online web databases were consulted to verify the taxonomic information. CAMARADES checklist was used to assess the quality of animal studies and Jadad scores for clinical trials. In total, 213 plant species belonging to 72 botanical families were reported. Only one plant, Droogmansia munamensis, is typically native to the DRC flora; 117 species are growing in the DRC and neighboring countries; 31 species are either introduced from other regions, and 64 are not specified. Alongside the treatment of Diabetes, about 78.13% of plants have multiple therapeutic uses, depending on the study sites. Experimental studies explored the antidiabetic activity of 133 plants, mainly in mice, rats, guinea pigs, and rabbits. Several chemical classes of antidiabetic compounds isolated from 67 plant species have been documented. Rare phase II clinical trials have been conducted. Critical issues included poor quality methodological protocols, author name incorrectly written (16.16%) or absent (14.25%) or confused with a synonym (4.69%), family name revised (17.26%) or missing (1.10%), voucher number not available 336(92.05%), ecological information not reported (49.59%). Most plant species have been identified and authenticated (89.32%). Hundreds of plants are used to treat Diabetes by traditional healers in DRC. However, most plants are not exclusively native to the local flora and have multiple therapeutic uses. The analysis showed the scarcity or absence of high-quality, in-depth pharmacological studies. There is a need to conduct further studies of locally specific species to fill the gap before their introduction into the national pharmacopeia.

5.
ScientificWorldJournal ; 2021: 5212348, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34671227

RESUMEN

BACKGROUND: Plant-derived medicines are widespread and continue to increase in traditional and modern medicine, especially in developing countries. Physalis peruviana L. is among the most used plants in conventional medication worldwide. This review aimed to highlight the ethnotherapeutic uses and phytochemical status of identified compounds in P. peruviana. METHODS: Data were collected from Google Scholar, PubMed/Medline, SciFinder, Science Direct, Scopus, the Wiley Online Library, Web of Science, and any other helpful search engine using Physalis peruviana as the primary keyword. RESULTS: Some countries, worldwide, use P. peruviana in their traditional medicine system to manage diverse ailments, mainly diseases and gastrointestinal tract disorders (25.33%). Leaf was the mostly used part (49.28%), prepared by decoction (31.58%) and overall administrated orally (53.57%) as the main route of admission. Around 502 phytoconstituents were identified in different plant parts, especially fruit (38.19%) ethanol/ethyl acetate extract. In most cases (36.17%), the solvent of the extract was not specified. Several phytochemical classes were found in the plant, especially terpenes (26.09%) and phenolic compounds (14.94%). Esters were also abundant (11.55%). In the terpenes category, carotenoids were the most abundant (11.15% followed by monoterpenes (8.76%) and diterpenes (3.18%). However, flavonoids (5.17%) followed by cinnamic acid derivatives (3.99%), monophenolic compounds (1.79%), and phenolic acids (1.33 M) are the most reported phenolic compounds. Hexadecanoic acid (palmitic acid) was the most cited (five times). CONCLUSION: P. peruviana plays an essential role in managing diseases in some countries and is rich in chemical compounds, which need to be isolated and investigated pharmacologically before clinical trials.


Asunto(s)
Medicina Tradicional/métodos , Physalis , Fitoquímicos/uso terapéutico , Extractos Vegetales/uso terapéutico , Animales , Enfermedades Gastrointestinales/tratamiento farmacológico , Enfermedades Gastrointestinales/epidemiología , Humanos , Medicina Tradicional/tendencias , Dolor/tratamiento farmacológico , Dolor/epidemiología , Fitoquímicos/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Enfermedades de la Piel/tratamiento farmacológico , Enfermedades de la Piel/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA