RESUMEN
The beneficial effects of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) on human health are widely known. Humans are rather inefficient in synthesizing n-3 LC-PUFA; thus, these compounds should be supplemented in the diet. However, most Western human diets have unbalanced n-6/n-3 ratios resulting from eating habits and the fact that fish sources (rich in n-3 LC-PUFA) are not sufficient (worldwide deficit ~347,956 t/y) to meet the world requirements. In this context, it is necessary to find new and sustainable sources of n-3 LC-PUFA. Poultry products can provide humans n-3 LC-PUFA due to physiological characteristics and the wide consumption of meat and eggs. The present work aims to provide a general overview of the main strategies that should be adopted during rearing and postproduction to enrich and preserve n-3 LC-PUFA in poultry products. The strategies include dietary supplementation of α-Linolenic acid (ALA) or n-3 LC-PUFA, or enhancing n-3 LC-PUFA by improving the LA (Linoleic acid)/ALA ratio and antioxidant concentrations. Moreover, factors such as genotype, rearing system, transport, and cooking processes can impact the n-3 LC-PUFA in poultry products. The use of a multifactorial view in the entire production chain allows the relevant enrichment and preservation of n-3 LC-PUFA in poultry products.
Asunto(s)
Ácidos Grasos Omega-3 , Animales , Dieta , Ácidos Grasos , Humanos , Ácido Linoleico , Carne/análisis , Estado Nutricional , Aves de CorralRESUMEN
Once-abundant aerial insectivores, such as the Tree Swallow (Tachycineta bicolor), have declined steadily in the past several decades, making it imperative to understand all aspects of their ecology. Aerial insectivores forage on a mixture of aquatic and terrestrial insects that differ in fatty acid composition, specifically long-chain omega-3 polyunsaturated fatty acid (LCPUFA) content. Aquatic insects contain high levels of both LCPUFA and their precursor omega-3 PUFA, alpha-linolenic acid (ALA), whereas terrestrial insects contain much lower levels of both. We manipulated both the quantity and quality of food for Tree Swallow chicks in a full factorial design. Diets were either high-LCPUFA or low in LCPUFA but high in ALA, allowing us to separate the effects of direct LCPUFA in diet from the ability of Tree Swallows to convert their precursor, ALA, into LCPUFA. We found that fatty acid composition was more important for Tree Swallow chick performance than food quantity. On high-LCPUFA diets, chicks grew faster, were in better condition, and had greater immunocompetence and lower basal metabolic rates compared with chicks on both low LCPUFA diets. Increasing the quantity of high-LCPUFA diets resulted in improvements to all metrics of performance while increasing the quantity of low-LCPUFA diets only resulted in greater immunocompetence and lower metabolic rates. Chicks preferentially retained LCPUFA in brain and muscle when both food quantity and LCPUFA were limited. Our work suggests that fatty acid composition is an important dimension of aerial insectivore nutritional ecology and reinforces the importance of high-quality aquatic habitat for these declining birds.