Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Rep ; 31(12): 107797, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32579924

RESUMEN

Peripheral nerve injury induces functional and structural remodeling of neural circuits along the somatosensory pathways, forming the basis for somatotopic reorganization and ectopic sensations, such as referred phantom pain. However, the mechanisms underlying that remodeling remain largely unknown. Whisker sensory nerve injury drives functional remodeling in the somatosensory thalamus: the number of afferent inputs to each thalamic neuron increases from one to many. Here, we report that extrasynaptic γ-aminobutyric acid-type A receptor (GABAAR)-mediated tonic inhibition is necessary for that remodeling. Extrasynaptic GABAAR currents were potentiated rapidly after nerve injury in advance of remodeling. Pharmacological activation of the thalamic extrasynaptic GABAARs in intact mice induced similar remodeling. Notably, conditional deletion of extrasynaptic GABAARs in the thalamus rescued both the injury-induced remodeling and the ectopic mechanical hypersensitivity. Together, our results reveal a molecular basis for injury-induced remodeling of neural circuits and may provide a new pharmacological target for referred phantom sensations after peripheral nerve injury.


Asunto(s)
Vías Aferentes/fisiopatología , Tejido Nervioso/lesiones , Tejido Nervioso/fisiopatología , Inhibición Neural/fisiología , Sensación/fisiología , Tálamo/fisiopatología , Ácido gamma-Aminobutírico/metabolismo , Animales , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Subunidades de Proteína/metabolismo , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo , Núcleos Talámicos Ventrales/fisiopatología
2.
Neuron ; 91(5): 1097-1109, 2016 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-27545713

RESUMEN

Neural circuits formed during postnatal development have to be maintained stably thereafter, but their mechanisms remain largely unknown. Here we report that the metabotropic glutamate receptor subtype 1 (mGluR1) is essential for the maintenance of mature synaptic connectivity in the dorsal lateral geniculate nucleus (dLGN). In mGluR1 knockout (mGluR1-KO) mice, strengthening and elimination at retinogeniculate synapses occurred normally until around postnatal day 20 (P20). However, during the subsequent visual-experience-dependent maintenance phase, weak retinogeniculate synapses were newly recruited. These changes were similar to those of wild-type (WT) mice that underwent visual deprivation or inactivation of mGluR1 in the dLGN from P21. Importantly, visual deprivation was ineffective in mGluR1-KO mice, and the changes induced by visual deprivation in WT mice were rescued by pharmacological activation of mGluR1 in the dLGN. These results demonstrate that mGluR1 is crucial for the visual-experience-dependent maintenance of mature synaptic connectivity in the dLGN.


Asunto(s)
Cuerpos Geniculados/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Sinapsis/fisiología , Tálamo/fisiología , Vías Visuales/fisiología , Animales , Carbamatos/farmacología , Cuerpos Geniculados/efectos de los fármacos , Glicina/análogos & derivados , Glicina/farmacología , Ratones , Ratones Noqueados , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/genética , Resorcinoles/farmacología , Retina/fisiología , Privación Sensorial/fisiología , Xantenos/farmacología
3.
Proc Natl Acad Sci U S A ; 107(16): 7562-7, 2010 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-20368417

RESUMEN

Axonal branching is thought to be regulated not only by genetically defined programs but also by neural activity in the developing nervous system. Here we investigated the role of pre- and postsynaptic activity in axon branching in the thalamocortical (TC) projection using organotypic coculture preparations of the thalamus and cortex. Individual TC axons were labeled with enhanced yellow fluorescent protein by transfection into thalamic neurons. To manipulate firing activity, a vector encoding an inward rectifying potassium channel (Kir2.1) was introduced into either thalamic or cortical cells. Firing activity was monitored with multielectrode dishes during culturing. We found that axon branching was markedly suppressed in Kir2.1-overexpressing thalamic cells, in which neural activity was silenced. Similar suppression of TC axon branching was also found when cortical cell activity was reduced by expressing Kir2.1. These results indicate that both pre- and postsynaptic activity is required for TC axon branching during development.


Asunto(s)
Axones/fisiología , Tálamo/fisiología , Potenciales de Acción/fisiología , Animales , Axones/metabolismo , Técnicas de Cocultivo , Silenciador del Gen , Técnicas de Transferencia de Gen , Modelos Neurológicos , Red Nerviosa , Vías Nerviosas/fisiología , Neuronas/metabolismo , Plásmidos/metabolismo , Canales de Potasio de Rectificación Interna/fisiología , Ratas , Ratas Sprague-Dawley , Tálamo/metabolismo
4.
J Neurosci ; 27(19): 5215-23, 2007 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-17494708

RESUMEN

Target and activity-dependent mechanisms of axonal branching were studied in the thalamocortical (TC) projection using organotypic cocultures of the thalamus and cortex. TC axons were labeled with enhanced yellow fluorescent protein (EYFP) by a single-cell electroporation method and observed over time by confocal microscopy. Changes in the firing activity of cocultures grown on multielectrode dishes were also monitored over time. EYFP-labeled TC axons exhibited more branch formation in and around layer 4 of the cortical explant during the second week in vitro, when spontaneous firing activity increased in both thalamic and cortical cells. Time-lapse imaging further demonstrated that branching patterns were generated dynamically by addition and elimination with a bias toward branch accumulation in the target layer. To examine the relationship between neural activity and TC branch formation, the dynamics of axonal branching was analyzed under various pharmacological treatments. Chronic blockade of firing or synaptic activity reduced the remodeling process, in particular, branch addition in the target layer. However, extension of branches was not affected by this treatment. Together, these findings suggest that neural activity can modify the molecular mechanisms that regulate lamina-specific TC axon branching.


Asunto(s)
Potenciales de Acción/fisiología , Diferenciación Celular/fisiología , Corteza Cerebral/embriología , Conos de Crecimiento/fisiología , Vías Nerviosas/embriología , Tálamo/embriología , Animales , Animales Recién Nacidos , Proteínas Bacterianas/genética , Comunicación Celular , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Técnicas de Cocultivo , Señales (Psicología) , Electroporación , Antagonistas de Aminoácidos Excitadores/farmacología , Conos de Crecimiento/ultraestructura , Proteínas Luminiscentes/genética , Microscopía Confocal , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/farmacología , Coloración y Etiquetado/métodos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Tálamo/citología , Tálamo/fisiología
5.
Novartis Found Symp ; 288: 199-208; discussion 208-11, 276-81, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18494260

RESUMEN

The thalamocortical (TC) projection in the mammalian brain is a well characterized system in terms of laminar specificity of neocortical circuits. To understand the mechanisms that underlie lamina-specific TC axon targeting, we studied the role of extracellular and cell surface molecules that are expressed in the upper layers of the developing cortex in in vitro culture techniques. The results demonstrated that multiple upper layer molecules co-operated to produce stop behaviour of TC axons in the target layer. Activity dependency of TC axon branching was also investigated in organotypic co-cultures of the thalamus and cortex. TC axon branches were formed dynamically by addition and elimination during the second week in vitro, when spontaneous firing increased in thalamic and cortical cells. Pharmacological blockade of firing or synaptic activity reduced the remodelling process, in particular branch addition, in the target layer. Together, these findings suggest that TC axon targeting mechanisms involve the regulation with multiple lamina-specific molecules and modification of the molecular mechanisms via neural activity.


Asunto(s)
Axones/fisiología , Corteza Cerebelosa/embriología , Regulación del Desarrollo de la Expresión Génica , Tálamo/embriología , Animales , Axones/metabolismo , Movimiento Celular/genética , Embrión de Mamíferos , Modelos Neurológicos , Red Nerviosa/embriología , Red Nerviosa/metabolismo , Sinapsis/fisiología , Tálamo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA