Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Commun Biol ; 6(1): 998, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37775688

RESUMEN

Here we demonstrate, in rodents, how the timing of feeding behaviour becomes disordered when circulating glucocorticoid rhythms are dissociated from lighting cues; a phenomenon most commonly associated with shift-work and transmeridian travel 'jetlag'. Adrenalectomized rats are infused with physiological patterns of corticosterone modelled on the endogenous adrenal secretory profile, either in-phase or out-of-phase with lighting cues. For the in-phase group, food intake is significantly greater during the rats' active period compared to their inactive period; a feeding pattern similar to adrenal-intact control rats. In contrast, the feeding pattern of the out-of-phase group is significantly dysregulated. Consistent with a direct hypothalamic modulation of feeding behaviour, this altered timing is accompanied by dysregulated timing of anorexigenic and orexigenic neuropeptide gene expression. For Neuropeptide Y (Npy), we report a glucocorticoid-dependent direct transcriptional regulation mechanism mediated by the glucocorticoid receptor (GR). Taken together, our data highlight the adverse behavioural outcomes that can arise when two circadian systems have anti-phasic cues, in this case impacting on the glucocorticoid-regulation of a process as fundamental to health as feeding behaviour. Our findings further highlight the need for development of rational approaches in the prevention of metabolic dysfunction in circadian-disrupting activities such as transmeridian travel and shift-work.


Asunto(s)
Glucocorticoides , Neuropéptidos , Ratas , Animales , Hipotálamo/metabolismo , Conducta Alimentaria , Neuropéptidos/genética , Neuropéptidos/metabolismo , Expresión Génica
2.
Front Pharmacol ; 13: 961135, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36110514

RESUMEN

Hypothalamo-neurohypophysial oxytocin (OXT) plays an essential role in reproduction and in several socio-physiological functions, including stress reduction, anxiety relief, feeding suppression, social recognition, and trust building. Recent studies suggest that the central OXT system is also involved in antinociceptive and anti-inflammatory functions. Kamikihi-to (KKT), a Japanese traditional herbal (Kampo) medicine composed of 14 herbal ingredients, is clinically prescribed for patients with psychological symptoms, including anxiety, depression, and insomnia, and it has been associated with OXT expression. We investigated the antinociceptive response and OXT expression according to sex and the effects of KKT pre administration in a rat model. We found that nociceptive responses measured via the hot plate and formalin tests were attenuated following the administration of KKT-enriched feed for 4 weeks. The observation of mRFP1 fluorescence in OXT-mRFP1 transgenic rats revealed that KKT-administered rats showed increased expression of OXT in the magnocellular and parvocellular paraventricular nucleus of the hypothalamus. Food intake in the KKT-pre-administered group significantly decreased after cholecystokinin (CCK)-8 administration. Our results suggest that KKT is involved in the attenuation of nociceptive stress in female rats by enhancing the expression of OXT in the hypothalamus.

3.
Commun Biol ; 5(1): 912, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064966

RESUMEN

Oxytocin (OXT) is produced in the hypothalamic nuclei and secreted into systemic circulation from the posterior pituitary gland. In the central nervous system, OXT regulates behaviours including maternal and feeding behaviours. Our aim is to evaluate whether oestrogen regulates hypothalamic OXT dynamics. Herein, we provide the first evidence that OXT dynamics in the hypothalamus vary with sex and that oestrogen may modulate dynamic changes in OXT levels, using OXT-mRFP1 transgenic rats. The fluorescence intensity of OXT-mRFP1 and expression of the OXT and mRFP1 genes in the hypothalamic nuclei is highest during the oestrus stage in female rats and decreased significantly in ovariectomised rats. Oestrogen replacement caused significant increases in fluorescence intensity and gene expression in a dose-related manner. This is also demonstrated in the rats' feeding behaviour and hypothalamic Fos neurons using cholecystokinin-8 and immunohistochemistry. Hypothalamic OXT expression is oestrogen-dependent and can be enhanced centrally by the administration of oestrogen.


Asunto(s)
Hipotálamo , Oxitocina , Animales , Peso Corporal , Estrógenos/metabolismo , Femenino , Hipotálamo/metabolismo , Oxitocina/metabolismo , Ratas , Ratas Transgénicas , Ratas Wistar
4.
J Neuroendocrinol ; 33(11): e13055, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34713515

RESUMEN

Transgenic approaches have been applied to generate transgenic rats that express exogenous genes in arginine vasopressin (AVP)- and oxytocin (OXT)-producing magnocellular neurosecretory cells (MNCs) of the hypothalamic-neurohypophyseal system (HNS). First, the fusion gene that expresses AVP-enhanced green fluorescent protein (eGFP) and OXT-monomeric red fluorescent protein 1 (mRFP1) was used to visualize AVP- and OXT-producing MNCs and their axon terminals in the HNS under fluorescence microscopy. Second, the fusion gene that expresses c-fos-eGFP and c-fos-mRFP1 was used to identify activated neurons physiologically in the central nervous system, including MNCs, circumventricular organs and spinal cord. In addition, AVP-eGFP x c-fos-mRFP1 and OXT-mRFP1 × c-fos-eGFP double transgenic rats were generated to identify activated AVP- and OXT-producing MNCs using appropriate physiological stimuli. Third, the fusion gene that expresses AVP-chanelrhodopsin 2 (ChR2)-eGFP and AVP-hM3Dq-mCherry was used to activate AVP- and OXT-producing MNCs by optogenetic and chemogenetic approaches. In each step, these transgenic approaches in rats have provided new insights on the physiological roles of AVP and OXT not only in the HNS, but also in the whole body. In this review, we summarize the transgenic rats that we generated, as well as related physiological findings.


Asunto(s)
Arginina Vasopresina , Oxitocina , Animales , Arginina Vasopresina/genética , Arginina Vasopresina/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Oxitocina/metabolismo , Ratas , Ratas Transgénicas
5.
J Food Drug Anal ; 29(4): 653-675, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-35649140

RESUMEN

Oxytocin (Oxt) is known to regulate social communication, stress and body weight. The activation of Oxt receptors (OTR) has clinical potential to abate stress disorders and metabolic syndrome. Kamikihito (KKT) is a traditional Japanese medicine used to treat psychological stress-related disorders. We investigated the effects of KKT, its ingredients and chemical components on Oxt neurons and OTR. C-Fos expression was examined after oral and peripheral administration of KKT in rats. Electrophysiological change of Oxt neurons and Oxt release upon application of KKT were measured in rat brain slice. The direct effect of KKT, its ingredients and its chemical components were examined by cytosolic Ca2+([Ca2+]i) measurement in Oxt neurons and OTR-expressing HEK293 cells. Both intraperitoneal and oral administration of KKT in rats induced c-Fos expression in neurons of the paraventricular nucleus (PVN) including Oxt neurons. Application of KKT induced activation of Oxt neurons and Oxt release. KKT increased [Ca2+]i in OTR-expressing HEK293 cells, and failed to activate with OTR antagonist. KKT-induced PVN Oxt neuron activation was also attenuated by OTR antagonist. Seven chemical components (rutin, ursolic acid, (Z )-butylidenephtalide, p-cymene, senkunolide, [6]-shogaol, [8]-shogaol) of three ingredients (Zizyphi Fructus, Angelicae Acutilobae Radix, Zingiberis Rhizoma) from KKT had potential to activate OTR. KKT can directly activate PVN Oxt neurons by interacting with OTR. The interaction of seven chemical components from KKT may contribute to activate OTR. Effect of KKT on Oxt neurons and OTR may contribute to the treatment of Oxt related disorders.


Asunto(s)
Oxitocina , Receptores de Oxitocina , Animales , Células HEK293 , Humanos , Japón , Medicina Tradicional de Asia Oriental , Oxitocina/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Receptores de Oxitocina/genética , Receptores de Oxitocina/metabolismo
6.
Physiol Rep ; 8(17): e14558, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32914562

RESUMEN

We generated a transgenic rat line that expresses oxytocin (OXT)-monomeric red fluorescent protein 1 (mRFP1) fusion gene to visualize the dynamics of OXT. In this transgenic rat line, hypothalamic OXT can be assessed under diverse physiological and pathophysiological conditions by semiquantitative fluorometry of mRFP1 fluorescence intensity as a surrogate marker for endogenous OXT. Using this transgenic rat line, we identified the changes in hypothalamic OXT synthesis under various physiological conditions. However, few reports have directly examined hypothalamic OXT synthesis under hyperosmolality or hypovolemia. In this study, hypothalamic OXT synthesis was investigated using the transgenic rat line after acute osmotic challenge and acute hypovolemia induced by intraperitoneal (i.p.) administration of 3% hypertonic saline (HTN) and polyethylene glycol (PEG), respectively. The mRFP1 fluorescence intensity in the paraventricular (PVN) and supraoptic nuclei (SON) was significantly increased after i.p. administration of HTN and PEG, along with robust Fos-like immunoreactivity (co-expression). Fos expression showed neuronal activation in the brain regions that are associated with the hypothalamus and/or are involved in maintaining water and electrolyte homeostasis in HTN- and PEG-treated rats. OXT and mRFP1 gene expressions were dramatically increased after HTN and PEG administration. The plasma OXT level was extremely increased after HTN and PEG administration. Acute osmotic challenge and acute hypovolemia induced upregulation of hypothalamic OXT in the PVN and SON. These results suggest that not only endogenous arginine vasopressin (AVP) but also endogenous OXT has a key role in maintaining body fluid homeostasis to cope with hyperosmolality and hypovolemia.


Asunto(s)
Hipotálamo/metabolismo , Hipovolemia/metabolismo , Presión Osmótica , Oxitocina/genética , Animales , Hipovolemia/fisiopatología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Osmorregulación , Oxitocina/metabolismo , Ratas , Transgenes , Regulación hacia Arriba , Proteína Fluorescente Roja
7.
J Neuroendocrinol ; 32(8): e12892, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32761684

RESUMEN

Osteoarthritis (OA) causes chronic joint pain and significantly impacts daily activities. Hence, developing novel treatment options for OA has become an increasingly important area of research. Recently, studies have reported that exogenous, as well as endogenous, hypothalamic-neurohypophysial hormones, oxytocin (OXT) and arginine-vasopressin (AVP), significantly contribute to nociception modulation. Moreover, the parvocellular OXT neurone (parvOXT) extends its projection to the superficial spinal dorsal horn, where it controls the transmission of nociceptive signals. Meanwhile, AVP produced in the magnocellular AVP neurone (magnAVP) is released into the systemic circulation where it contributes to pain management at peripheral sites. The parvocellular AVP neurone (parvAVP), as well as corticotrophin-releasing hormone (CRH), suppresses inflammation via activation of the hypothalamic-pituitary adrenal (HPA) axis. Previously, we confirmed that the OXT/AVP system is activated in rat models of pain. However, the roles of endogenous hypothalamic-neurohypophysial hormones in OA have not yet been characterised. In the present study, we investigated whether the OXT/AVP system is activated in a knee OA rat model. Our results show that putative parvOXT is activated and the amount of OXT-monomeric red fluorescent protein 1 positive granules in the ipsilateral superficial spinal dorsal horn increases in the knee OA rat. Furthermore, both magnAVP and parvAVP are activated, concurrent with HPA axis activation, predominantly modulated by AVP, and not CRH. The OXT/AVP system in OA rats was similar to that in systemic inflammation models, including adjuvant arthritis; however, magnocellular OXT neurones (magnOXT) were not activated in OA. Hence, localised chronic pain conditions, such as knee OA, activate the OXT/AVP system without impacting magnOXT.


Asunto(s)
Arginina Vasopresina/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Osteoartritis de la Rodilla/metabolismo , Oxitocina/metabolismo , Animales , Arginina Vasopresina/genética , Artralgia/genética , Artralgia/metabolismo , Artralgia/patología , Modelos Animales de Enfermedad , Hipotálamo/metabolismo , Masculino , Neuronas/metabolismo , Nocicepción/fisiología , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/patología , Oxitocina/genética , Ratas , Ratas Transgénicas , Ratas Wistar
8.
Mol Pain ; 16: 1744806920943334, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32686583

RESUMEN

The neurohypophysial hormone oxytocin (OXT) is synthesized in the hypothalamic paraventricular and supraoptic nuclei. Recently, some studies have considered OXT to be important in sensory modulation and that the OXT protein is upregulated by acute and chronic nociception. However, the mechanism by which OXT is upregulated in neurons is unknown. In this study, we examined the resting membrane potentials and excitatory postsynaptic currents in OXT-ergic neurons in the paraventricular nucleus in adjuvant arthritis rat model, a model of chronic inflammation, using whole-cell patch-clamping. Transgenic rats expressing OXT and monomeric red fluorescent protein 1 (mRFP1) fusion protein to visualize the OXT-ergic neurons were used, and the OXT-mRFP1 transgenic rat model of adjuvant arthritis was developed by injection of heat-killed Mycobacterium butyricum. Furthermore, the feedback system of synthesized OXT was also examined using the OXT receptor antagonist L-368,899. We found that the resting membrane potentials and frequency of miniature excitatory postsynaptic currents and spontaneous excitatory postsynaptic currents in OXT-monomeric red fluorescent protein 1 neurons in the paraventricular nucleus were significantly increased in adjuvant arthritis rats. Furthermore, L-368,899 dose-dependently increased the frequency of miniature excitatory postsynaptic currents and spontaneous excitatory postsynaptic currents in OXT-ergic neurons. Following bath application of the GABAA receptor antagonist picrotoxin and the cannabinoid receptor 1 antagonist AM 251, L-368,899 still increased the frequency of miniature excitatory postsynaptic currents. However, following bath application of the nitric oxide synthase inhibitor Nω-Nitro-L-arginine methyl ester hydrochloride, L-368,899 did not alter the miniature excitatory postsynaptic current frequency. Thus, it is suggested that OXT-ergic neuron activity is upregulated via an increase in glutamate release, and that the upregulated OXT neurons have a feedback system with released endogenous OXT. It is possible that nitric oxide, but not GABA, may contribute to the feedback system of OXT neurons in chronic inflammation.


Asunto(s)
Artritis Experimental/metabolismo , Retroalimentación , Glutamatos/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Oxitocina/metabolismo , Terminales Presinápticos/metabolismo , Transmisión Sináptica , Animales , Canfanos/farmacología , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Proteínas Luminiscentes/metabolismo , Masculino , Modelos Biológicos , NG-Nitroarginina Metil Éster/farmacología , Neuronas/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Técnicas de Placa-Clamp , Picrotoxina/farmacología , Piperazinas/farmacología , Piperidinas/farmacología , Terminales Presinápticos/efectos de los fármacos , Pirazoles/farmacología , Ratas Transgénicas , Ratas Wistar , Receptores de Oxitocina/antagonistas & inhibidores , Receptores de Oxitocina/metabolismo , Transmisión Sináptica/efectos de los fármacos , Proteína Fluorescente Roja
9.
Peptides ; 129: 170313, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32298774

RESUMEN

Experimental allergic encephalomyelitis (EAE) is considered to be a useful animal model of human multiple sclerosis (MS). However, among the various symptoms of MS, the mechanisms contributing to inflammatory anorexia remain unclear. In the present study, we used an EAE rat model to examine changes in expression levels of hypothalamic feeding-related peptide genes and neuroendocrine responses such as the hypothalamo-neurohypophysial system and the hypothalamo-pituitary-adrenal (HPA) axis. The weight gain and cumulative food intake in EAE rats in the early days after immunization was significantly lower than that of the control group. The expression of orexigenic peptide genes Npy and Agrp were significantly increased, whereas the levels of anorectic peptide genes (Pomc and Cart) were significantly decreased in the hypothalamus of EAE rats. There was also a significant increase in the mRNA and plasma oxytocin (OXT) but not of arginine vasopressin (AVP) in the supraoptic and paraventricular nuclei (PVN) of EAE rats at days 12 and 18 after immunization. The expression of corticotropin-releasing hormone (Crh) and Avp was downregulated and upregulated, respectively, in the parvocellular division of the PVN at day 12 after immunization. The expression level of Pomc in the anterior pituitary significantly increased, accompanied by increased plasma corticosterone levels, at days 6, 12, and 18 after immunization. These results suggest that inflammatory anorexia in rat EAE may be caused by activation of the OXT-ergic pathway and HPA axis via changes in the expression of hypothalamic feeding-related peptides, including Avp but not Crh.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Animales , Arginina Vasopresina/metabolismo , Peso Corporal/fisiología , Corticosterona/metabolismo , Ingestión de Alimentos/fisiología , Hipotálamo/metabolismo , Hibridación in Situ , Masculino , Neurofisinas/metabolismo , Oxitocina/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Precursores de Proteínas/metabolismo , Ratas , Vasopresinas/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-32117068

RESUMEN

Various types of acute/chronic nociceptive stimuli cause neuroendocrine responses such as activation of the hypothalamo-neurohypophysial [oxytocin (OXT) and arginine vasopressin (AVP)] system and hypothalamo-pituitary adrenal (HPA) axis. Chronic multiple-arthritis activates the OXT/AVP system, but the effects of acute mono-arthritis on the OXT/AVP system in the same animals has not been simultaneously evaluated. Further, AVP, not corticotropin-releasing hormone (CRH), predominantly activates the HPA axis in chronic multiple-arthritis, but the participation of AVP in HPA axis activation in acute mono-arthritis remains unknown. Therefore, we aimed to simultaneously evaluate the effects of acute mono-arthritis on the activity of the OXT/AVP system and the HPA axis. In the present study, we used an acute mono-arthritic model induced by intra-articular injection of carrageenan in a single knee joint of adult male Wistar rats. Acute mono-arthritis was confirmed by a significant increase in knee diameter in the carrageenan-injected knee and a significant decrease in the mechanical nociceptive threshold in the ipsilateral hind paw. Immunohistochemical analysis revealed that the number of Fos-immunoreactive (ir) cells in the ipsilateral lamina I-II of the dorsal horn was significantly increased, and the percentage of OXT-ir and AVP-ir neurons expressing Fos-ir in both sides of the supraoptic (SON) and paraventricular nuclei (PVN) was increased in acute mono-arthritic rats. in situ hybridization histochemistry revealed that levels of OXT mRNA and AVP hnRNA in the SON and PVN, CRH mRNA in the PVN, and proopiomelanocortin mRNA in the anterior pituitary were also significantly increased in acute mono-arthritic rats. Further, plasma OXT, AVP, and corticosterone levels were significantly increased in acute mono-arthritic rats. These results suggest that acute mono-arthritis activates ipsilateral nociceptive afferent pathways at the spinal level and causes simultaneous and integrative activation of the OXT/AVP system. In addition, the HPA axis is activated by both AVP and CRH in acute mono-arthritis with a distinct pattern compared to that in chronic multiple-arthritis.


Asunto(s)
Artritis/fisiopatología , Sistema Hipotálamo-Hipofisario/fisiopatología , Sistema Hipófiso-Suprarrenal/fisiopatología , Enfermedad Aguda , Vías Aferentes/fisiología , Animales , Arginina Vasopresina/sangre , Arginina Vasopresina/genética , Artritis/genética , Artritis/metabolismo , Artritis/patología , Hormona Liberadora de Corticotropina/sangre , Hormona Liberadora de Corticotropina/genética , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/patología , Masculino , Neuronas/fisiología , Dolor Nociceptivo/etiología , Dolor Nociceptivo/genética , Dolor Nociceptivo/metabolismo , Dolor Nociceptivo/fisiopatología , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/patología , Osteoartritis de la Rodilla/fisiopatología , Oxitocina/sangre , Oxitocina/genética , Sistema Hipófiso-Suprarrenal/metabolismo , Sistema Hipófiso-Suprarrenal/patología , Proopiomelanocortina/sangre , Proopiomelanocortina/genética , Ratas , Ratas Wistar
11.
Sci Rep ; 9(1): 18360, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31798010

RESUMEN

Body weight (BW) is regulated in age-dependent manner; it continues to increase during growth period, and reaches a plateau once reaching adulthood. However, its underlying mechanism remains unknown. Regarding such mechanisms in the brain, we here report that neural circuits from the hypothalamus (paraventricular nucleus: PVN) to the brainstem (dorsal vagal complex: DVC) suppress late-onset BW gain without affecting food intake. The genetic suppression of the PVN-DVC circuit induced BW increase only in aged rats, indicating that this circuit contributes to suppress the BW at a fixed level after reaching adulthood. PVN neurons in the hypothalamus were inactive in younger rats but active in aged rats. The density of neuropeptide Y (NPY) terminal/fiber is reduced in the aged rat PVN area. The differences in neuronal activity, including oxytocin neurons in the PVN, were affected by the application of NPY or its receptor inhibitor, indicating that NPY is a possible regulator of this pathway. Our data provide new insights into understanding age-dependent BW regulation.


Asunto(s)
Tronco Encefálico/fisiología , Ingestión de Alimentos/fisiología , Hipotálamo/fisiología , Aumento de Peso/fisiología , Animales , Peso Corporal/fisiología , Humanos , Neuronas/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Ratas
12.
Neurosci Lett ; 711: 134426, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31401303

RESUMEN

Anorexia is one of the most widespread eating disorders that appears to contribute to malnutrition in patients with advanced kidney dysfunction. The changes of neuropeptides controlling feeding behaviors synthesized in the hypothalamus under several physiological condition could induce anorexia. While several mechanisms underlying uremic anorexia have been proposed, the changes of hypothalamic neuropeptides controlling feeding behaviors of uremic patients are poorly understood. The gene expressions of hypothalamic neuropeptides controlling feeding behaviors were evaluated after bilateral nephrectomy, which is a model of acute kidney dysfunction, by in situ hybridization histochemistry. Food consumption decreased markedly in bilateral nephrectomized rats. The mRNA levels of corticotrophin-releasing hormone, proopiomelanocortin, cocaine- and amphetamine-regulated transcript, which suppress feeding behavior, were significantly higher in bilateral nephrectomized rats than in sham-operated rats. On the other hand, the mRNA levels of Agouti-related peptide, neuropeptide Y, melanin-concentrating hormone, and orexin, which promote feeding behavior, were significantly lower in bilateral nephrectomized rats than in sham-operated rats. In addition, the plasma level of leptin, which has an anorexic effect, increased after bilateral nephrectomy. The results suggest that hypothalamic neuropeptides controlling feeding behaviors may be involved in the development of anorexia in bilateral nephrectomized rats. This report is the first step to elucidating the physiological mechanisms of anorexia in patients with kidney dysfunction.


Asunto(s)
Anorexia/metabolismo , Conducta Alimentaria/fisiología , Hipotálamo/metabolismo , Enfermedades Renales/metabolismo , Neuropéptidos/metabolismo , Animales , Anorexia/etiología , Regulación de la Expresión Génica , Enfermedades Renales/complicaciones , Masculino , Nefrectomía , Neuropéptidos/análisis , Ratas , Ratas Wistar
13.
J Physiol Sci ; 69(3): 531-541, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30937882

RESUMEN

Acute loss of kidney function is a critical internal stressor. Arginine vasopressin (AVP) present in the parvocellular division of the paraventricular nucleus (PVN) plays a key role in the regulation of stress responses. However, hypothalamic AVP dynamics during acute kidney dysfunction remain unclear. In this study, we investigated the effects of bilateral nephrectomy on AVP, using a transgenic rat line that expressed the AVP-enhanced green fluorescent protein (eGFP). The eGFP fluorescent intensities in the PVN were dramatically increased after bilateral nephrectomy. The mRNA levels of eGFP, AVP, and corticotrophin-releasing hormone in the PVN were dramatically increased after bilateral nephrectomy. Bilateral nephrectomy also increased the levels of Fos-like immunoreactive cells in brainstem neurons. These results indicate that bilateral nephrectomy upregulates the AVP-eGFP synthesis. Further studies are needed to identify the neural and/or humoral factors that activate AVP synthesis and regulate neuronal circuits during acute kidney dysfunction.


Asunto(s)
Lesión Renal Aguda/metabolismo , Arginina Vasopresina/metabolismo , Hipotálamo/metabolismo , Riñón/metabolismo , Animales , Hormona Liberadora de Corticotropina/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Transgénicas
15.
Peptides ; 112: 114-124, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30562556

RESUMEN

Kisspeptin (KP), known as a hypothalamic neuropeptide, plays a critical role in the regulation of not only reproduction but also food intake. The anorectic neuropeptides, nesfatin-1 and oxytocin (OXT), are expressed in central nervous system, particulaly in various hypothalamic nuclei, and peripheral tissue. We examined the effects of the intracerebroventricular (icv) administration of KP-10 on feeding and nesfatin-1-immunoreactive (ir) or OXT-ir neurons in the rat hypothalamus, using Fos double immunohistochemistry in male rats. Cumulative food intake was remarkably decreased 0.5-3 h after icv administration of KP-10 (6.0 µg) compared to the vehicle treated and the KP-10 (3.8 µg) treated group. The icv administration of KP-10 significantly increased the number of nesfatin-1-ir neurons expressing Fos in the supraoptic nucleus (SON), paraventricular nucleus (PVN), arcuate nucleus (ARC), dorsal raphe nucleus, locus coeruleus, and nucleus tractus solitarius. The decreased food intake induced by KP-10 was significantly attenuated by pretreatment with the icv administration of antisense RNA against nucleobindin-2. After icv administration of KP-10, the percentages of OXT-ir neurons expressing FOS were remarkably higher in the SON and PVN than for vehicle treatment. The KP-10-induced anorexia was partially abolished by pretreatment with OXT receptor antagonist (OXTR-A). The percentage of nesfatin-1-ir neurons expressing Fos-ir in the ARC was also decreased by OXTR-A pretreatment. These results indicate that central administration of KP-10 activates nesfatin-1- and OXT neurons, and may play an important role in the suppression of feeding in male rats.


Asunto(s)
Proteínas de Unión al Calcio/genética , Proteínas de Unión al ADN/genética , Ingestión de Alimentos/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Kisspeptinas/farmacología , Proteínas del Tejido Nervioso/genética , Oxitocina/genética , Animales , Anorexia , Regulación de la Expresión Génica , Infusiones Intraventriculares , Kisspeptinas/administración & dosificación , Kisspeptinas/metabolismo , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Nucleobindinas , Ratas
16.
Yakugaku Zasshi ; 138(8): 1017-1024, 2018.
Artículo en Japonés | MEDLINE | ID: mdl-30068841

RESUMEN

Various neuropeptides play an essential role in the nutrient sensing mechanism and related homeostasis. Nesfatin-1 is a newly identified neuropeptide having anorectic activity, and nesfatin-1-containing neurons are widely distributed in the brain, including the hypothalamus and brain stem. Our previous study showed that dehydration-induced anorectic effects are mediated via the central nesfatin-1 pathway in rats. Our recent studies have also shown that peripheral anorectic peptides (cholecystokinin-8, glucagon-like peptide-1, and leptin) and an antineoplastic agent (cisplatin) caused inhibition of feeding via the central nesfatin-1 pathway in rats. Nesfatin-1-containing neurons in the central nervous system, in particular the hypothalamus and the brain stem, may mediate peripheral nutrient signals and regulate feeding behavior.


Asunto(s)
Anorexia/etiología , Anorexia/genética , Colecistoquinina/fisiología , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/genética , Alimentos , Péptido 1 Similar al Glucagón/fisiología , Leptina/fisiología , Fenómenos Fisiológicos de la Nutrición/genética , Fenómenos Fisiológicos de la Nutrición/fisiología , Transducción de Señal/fisiología , Animales , Antineoplásicos/efectos adversos , Tronco Encefálico/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/fisiología , Colecistoquinina/metabolismo , Cisplatino/efectos adversos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Péptido 1 Similar al Glucagón/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Nucleobindinas , Ratas Wistar
17.
Peptides ; 105: 14-20, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29751050

RESUMEN

The effects of hypergravity on the gene expression of the hypothalamic feeding-related neuropeptides in sham-operated (Sham) and vestibular-lesioned (VL) mice were examined by in situ hybridization histochemistry. Corticotrophin-releasing hormone (CRH) in the paraventricular nucleus was increased significantly in Sham but not in VL mice after 3 days of exposure to a 2 g environment compared with a 1 g environment. Significant decreases in pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript and significant increases in neuropeptide Y, agouti-related protein in the arcuate nucleus and orexin in the lateral hypothalamic area were observed in both Sham and VL mice. After 2 weeks of exposure, CRH and POMC were increased significantly in Sham but not in VL mice. After 8 weeks of exposure, the hypothalamic feeding-related neuropeptides were comparable between Sham and VL mice. These results suggest that the hypothalamic feeding-related neuropeptides may be affected during the exposed duration of hypergravity via vestibular inputs.


Asunto(s)
Hormona Adrenocorticotrópica/genética , Hipergravedad/efectos adversos , Neuropéptido Y/genética , Proopiomelanocortina/genética , Proteína Relacionada con Agouti/genética , Anfetamina/efectos adversos , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/metabolismo , Cocaína/efectos adversos , Expresión Génica , Regulación de la Expresión Génica/genética , Hipotálamo/metabolismo , Hibridación in Situ , Ratones , Orexinas/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Vestíbulo del Laberinto/metabolismo
18.
Am J Physiol Endocrinol Metab ; 315(4): E478-E488, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28174180

RESUMEN

Light synchronizes the body's circadian rhythms by modulating the master clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. In modern lifestyles that run counter to normal circadian rhythms, the extended and/or irregular light exposure impairs circadian rhythms and, consequently, promotes feeding and metabolic disorders. However, the neuronal pathway through which light is coupled to feeding behavior is less elucidated. The present study employed the light exposure during the dark phase of the day in rats and observed its effect on neuronal activity and feeding behavior. Light exposure acutely suppressed food intake and elevated c-Fos expression in the AVP neurons of SCN and the oxytocin (Oxt) neurons of paraventricular nucleus (PVN) in the hypothalamus. The light-induced suppression of food intake was abolished by blockade of the Oxt receptor in the brain. Retrograde tracer analysis demonstrated the projection of SCN AVP neurons to the PVN. Furthermore, intracerebroventricular injection of AVP suppressed food intake and increased c-Fos in PVN Oxt neurons. Intra-PVN injection of AVP exerted a stronger anorexigenic effect than intracerebroventriclar injection. AVP also induced intracellular Ca2+ signaling and increased firing frequency in Oxt neurons in PVN slices. These results reveal the novel neurocircuit from SCN AVP to PVN Oxt that relays light reception to inhibition of feeding behavior. This light-induced neurocircuit may serve as a pathway for forming the circadian feeding rhythm and linking irregular light exposure to arrhythmic feeding and, consequently, obesity and metabolic diseases.


Asunto(s)
Arginina Vasopresina/metabolismo , Conducta Alimentaria/fisiología , Luz , Oxitocina/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Supraquiasmático/metabolismo , Animales , Arginina Vasopresina/farmacología , Arginina Vasopresina/fisiología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Ritmo Circadiano/fisiología , Conducta Alimentaria/efectos de los fármacos , Hipotálamo/metabolismo , Hipotálamo/fisiología , Inhibición Psicológica , Masculino , Vías Nerviosas , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oxitocina/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Proteínas Proto-Oncogénicas c-fos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Wistar , Receptores de Oxitocina , Núcleo Supraquiasmático/fisiología
19.
Gen Comp Endocrinol ; 258: 15-32, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29155265

RESUMEN

It is now accepted that vasopressin, through V1A/V1B receptors, centrally regulates cognitive functions such as memory, affiliation, stress, fear and depression. However, the respective roles of these receptor isoforms and their contribution to stress-related pathologies remain uncertain. The development of new therapeutic treatments requires a precise knowledge of the distribution of these receptors within the brain, which has been so far hampered by the lack of selective V1B markers. In the present study, we have determined the pharmacological properties of three new potent rat V1B fluorescent ligands and demonstrated that they constitute valuable tools for simultaneous visualization and activation of native V1B receptors in living rat brain tissue. Thus, d[Leu4,Lys-Alexa 647)8]VP (analogue 3), the compound with the best affinity-selectivity/fluorescence ratio for the V1B receptor emerged as the most promising. The rat brain regions most concerned by stress such as hippocampus, olfactory bulbs, cortex and amygdala display the highest V1B fluorescent labelling with analogue 3. In the hippocampus CA2, V1B receptors are located on glutamatergic, not GABAergic neurones, and are absent from astrocytes. Using AVP-EGFP rats, we demonstrate the presence of V1B autoreceptors on AVP-secreting neurones not only in the hypothalamus, but also sparsely in the hippocampus. Finally, using both electrophysiology and visualization of ERK phosphorylation, we show analogue 3-induced activation of the V1B receptor in situ. This will help to analyse expression and functionality of V1B receptors in the brain and contribute to further explore the AVPergic circuitry in normal and pathological conditions.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/metabolismo , Colorantes Fluorescentes/metabolismo , Receptores de Vasopresinas/metabolismo , Animales , Arginina Vasopresina/metabolismo , Astrocitos/metabolismo , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Hipotálamo/metabolismo , Ligandos , Masculino , Neuroanatomía , Neuronas/metabolismo , Hipófisis/citología , Ratas Sprague-Dawley , Receptores de GABA/metabolismo , Coloración y Etiquetado , Vasopresinas/metabolismo
20.
Neurosci Lett ; 655: 54-60, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28684238

RESUMEN

Peripheral anorectic hormones, such as peptide YY (PYY) and oxytocin (OXT), suppress food intake. A newly identified anorectic neuropeptide, nesfatin-1, is synthesized in both peripheral tissue and the central nervous system, particularly by various nuclei in the hypothalamus and brainstem. Here, we examined the effects of intraperitoneal (ip) administration of PYY3-36, OXT, and OXT analog, on nesfatin-1-immunoreactive (ir) neurons in the rat hypothalamus and brainstem, using Fos double fluorescence-immunohistochemistry. The ip administration of OXT and OXT analog significantly increased the number of nesfatin-1-ir neurons expressing Fos-ir in the paraventricular nucleus, the arcuate nucleus, and the nucleus tractus solitarius, but not in the supraoptic nucleus, the lateral hypothalamic area, and the area postrema. No differences in the percentage of nesfatin-1-ir neurons expressing Fos in the nuclei of the hypothalamus and brainstem were observed, between rats treated with vehicle or those treated with PYY3-36. The decreased food intake, induced by OXT and OXT analog, was attenuated significantly by pretreatment with intracerebroventricular administration of antisense nesfatin-1. These results suggested that nesfatin-1-expressing neurons in the hypothalamus and brainstem may play a role in sensing the peripheral level of OXT and its suppression of feeding in rats.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al ADN/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Oxitocina/farmacología , Animales , Tronco Encefálico/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al ADN/genética , Hipotálamo/metabolismo , Inyecciones Intraperitoneales , Inyecciones Intraventriculares , Masculino , Proteínas del Tejido Nervioso/genética , Nucleobindinas , Oligonucleótidos Antisentido/farmacología , Fragmentos de Péptidos/farmacología , Péptido YY/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA