Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurosci Biobehav Rev ; 152: 105332, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37524138

RESUMEN

The somatosensory system organizes the topographic representation of body maps, termed somatotopy, at all levels of an ascending hierarchy. Postnatal maturation of somatotopy establishes optimal somatosensation, whereas deafferentation in adults reorganizes somatotopy, which underlies pathological somatosensation, such as phantom pain and complex regional pain syndrome. Here, we focus on the mouse whisker somatosensory thalamus to study how sensory experience shapes the fine topography of afferent connectivity during the critical period and what mechanisms remodel it and drive a large-scale somatotopic reorganization after peripheral nerve injury. We will review our findings that, following peripheral nerve injury in adults, lemniscal afferent synapses onto thalamic neurons are remodeled back to immature configuration, as if the critical period reopens. The remodeling process is initiated with local activation of microglia in the brainstem somatosensory nucleus downstream to injured nerves and heterosynaptically controlled by input from GABAergic and cortical neurons to thalamic neurons. These fruits of thalamic studies complement well-studied cortical mechanisms of somatotopic organization and reorganization and unveil potential intervention points in treating pathological somatosensation.


Asunto(s)
Traumatismos de los Nervios Periféricos , Ratones , Animales , Tálamo , Neuronas/fisiología , Tronco Encefálico/fisiología , Sinapsis/fisiología , Corteza Somatosensorial/fisiología
2.
STAR Protoc ; 2(3): 100743, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34430916

RESUMEN

In the central nervous system, developmental and pathophysiologic conditions cause a large-scale reorganization of functional connectivity of neural circuits. Here, by using a mouse model for peripheral sensory nerve injury, we present a protocol for combined electrophysiological and anatomical techniques to identify neural basis of synaptic remodeling in the mouse whisker thalamus. Our protocol provides comprehensive approaches to analyze both structural and functional components of synaptic remodeling. For complete details on the use and execution of this protocol, please refer to Ueta and Miyata, (2021).


Asunto(s)
Plasticidad Neuronal/fisiología , Cirugía Veterinaria/métodos , Tálamo/anatomía & histología , Tálamo/fisiología , Vías Aferentes/fisiopatología , Animales , Fenómenos Electrofisiológicos/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Traumatismos de los Nervios Periféricos/fisiopatología , Relación Estructura-Actividad , Vibrisas/metabolismo
3.
Cell Rep ; 34(10): 108823, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33691115

RESUMEN

Whisker deafferentation in mice disrupts topographic connectivity from the brainstem to the thalamic ventral posteromedial nucleus (VPM), which represents whisker map, by recruiting "ectopic" axons carrying non-whisker information in VPM. However, mechanisms inducing this plasticity remain largely unknown. Here, we show the role of region-specific microglia in the brainstem principal trigeminal nucleus (Pr5), a whisker sensory-recipient region, in VPM whisker map plasticity. Systemic or local manipulation of microglial activity reveals that microglia in Pr5, but not in VPM, are necessary and sufficient for recruiting ectopic axons in VPM. Deafferentation causes membrane hyperexcitability of Pr5 neurons dependent on microglia. Inactivation of Pr5 neurons abolishes this somatotopic reorganization in VPM. Additionally, microglial depletion prevents deafferentation-induced ectopic mechanical hypersensitivity. Our results indicate that local microglia in the brainstem induce peripheral nerve injury-induced plasticity of map organization in the thalamus and suggest that microglia are potential therapeutic targets for peripheral nerve injury-induced mechanical hypersensitivity.


Asunto(s)
Microglía/citología , Traumatismos de los Nervios Periféricos/patología , Núcleos Talámicos Ventrales/fisiología , Aminopiridinas/farmacología , Animales , Tronco Encefálico/citología , Femenino , Hipersensibilidad/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Neuronas/fisiología , Traumatismos de los Nervios Periféricos/metabolismo , Pirroles/farmacología , Tálamo/fisiología , Núcleos Talámicos Ventrales/efectos de los fármacos , Vibrisas/fisiología
4.
Cell Rep ; 31(12): 107797, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32579924

RESUMEN

Peripheral nerve injury induces functional and structural remodeling of neural circuits along the somatosensory pathways, forming the basis for somatotopic reorganization and ectopic sensations, such as referred phantom pain. However, the mechanisms underlying that remodeling remain largely unknown. Whisker sensory nerve injury drives functional remodeling in the somatosensory thalamus: the number of afferent inputs to each thalamic neuron increases from one to many. Here, we report that extrasynaptic γ-aminobutyric acid-type A receptor (GABAAR)-mediated tonic inhibition is necessary for that remodeling. Extrasynaptic GABAAR currents were potentiated rapidly after nerve injury in advance of remodeling. Pharmacological activation of the thalamic extrasynaptic GABAARs in intact mice induced similar remodeling. Notably, conditional deletion of extrasynaptic GABAARs in the thalamus rescued both the injury-induced remodeling and the ectopic mechanical hypersensitivity. Together, our results reveal a molecular basis for injury-induced remodeling of neural circuits and may provide a new pharmacological target for referred phantom sensations after peripheral nerve injury.


Asunto(s)
Vías Aferentes/fisiopatología , Tejido Nervioso/lesiones , Tejido Nervioso/fisiopatología , Inhibición Neural/fisiología , Sensación/fisiología , Tálamo/fisiopatología , Ácido gamma-Aminobutírico/metabolismo , Animales , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Subunidades de Proteína/metabolismo , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo , Núcleos Talámicos Ventrales/fisiopatología
5.
Cereb Cortex ; 26(6): 2689-2704, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26045568

RESUMEN

Most glutamatergic inputs in the neocortex originate from the thalamus or neocortical pyramidal cells. To test whether thalamocortical afferents selectively innervate specific cortical cell subtypes and surface domains, we investigated the distribution patterns of thalamocortical and corticocortical excitatory synaptic inputs in identified postsynaptic cortical cell subtypes using intracellular and immunohistochemical staining combined with confocal laser scanning and electron microscopic observations in 2 thalamorecipient sublayers, lower layer 2/3 (L2/3b) and lower layer 5 (L5b) of rat frontal cortex. The dendrites of GABAergic parvalbumin (PV) cells preferentially received corticocortical inputs in both sublayers. The somata of L2/3b PV cells received thalamic inputs in similar proportions to the basal dendritic spines of L2/3b pyramidal cells, whereas L5b PV somata were mostly innervated by cortical inputs. The basal dendrites of L2/3b pyramidal and L5b corticopontine pyramidal cells received cortical and thalamic glutamatergic inputs in proportion to their local abundance, whereas crossed-corticostriatal pyramidal cells in L5b exhibited a preference for thalamic inputs, particularly in their distal dendrites. Our data demonstrate an exquisite selectivity among thalamocortical afferents in which synaptic connectivity is dependent on the postsynaptic neuron subtype, cortical sublayer, and cell surface domain.


Asunto(s)
Lóbulo Frontal/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Tálamo/fisiología , Animales , Lóbulo Frontal/ultraestructura , Ácido Glutámico/metabolismo , Inmunohistoquímica , Masculino , Microscopía Confocal , Microscopía Electrónica , Técnicas de Trazados de Vías Neuroanatómicas , Neuronas/ultraestructura , Ratas Wistar , Tálamo/ultraestructura
6.
J Neurosci ; 32(5): 1730-46, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22302813

RESUMEN

During sleep, the electroencephalogram exhibits synchronized slow waves that desynchronize when animals awaken [desynchronized states (DSs)]. During slow-wave states, the membrane potentials of cortical neurons oscillate between discrete depolarized states ("Up states") and periods of hyperpolarization ("Down states"). To determine the role of corticothalamic loops in generating Up/Down oscillations in rats, we recorded unit activities of layer 5 (L5) corticothalamic (CTh) cells in the frontal cortex, neurons in the thalamic reticular nucleus, and basal ganglia- and cerebellum-linked thalamic relay nuclei, while simultaneously monitoring the local cortical field potential to identify slow-wave/spindle oscillations and desynchronization. We found that (1) some basal ganglia-linked and reticular thalamic cells fire preferentially near the beginning of Up states; (2) thalamic cells fire more selectively at a given Up-state phase than do CTh cells; (3) CTh and thalamic cells exhibit different action potential timings within spindle cycles; and (4) neurons exhibit different firing characteristics when comparing their activity during Up states and DSs. These data demonstrate that cortico-thalamo-cortical subnetworks are temporally differentiated during slow and spindle oscillations, that the basal ganglia-linked thalamic nuclei are closely related with Up-state initiation, and that Up states and DSs are distinguished as different depolarization states of neurons within the network.


Asunto(s)
Potenciales de Acción/fisiología , Ondas Encefálicas/fisiología , Corteza Cerebral/fisiología , Red Nerviosa/fisiología , Tálamo/fisiología , Animales , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA