Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 6214, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486008

RESUMEN

Fucoidan has attracted considerable attention from scientists and pharmaceutical companies due to its antioxidant, anticoagulant, anti-inflammatory, anti-tumor, and health-enhancing properties. However, the extraction of fucoidan from seaweeds often involves the use of harsh chemicals, which necessitates the search for alternative solvents. Additionally, the high viscosity and low cell permeability of high molecular weight (Mw) fucoidan can limit its effectiveness in drug action, while lower Mw fractions exhibit increased biological activity and are also utilized as dietary supplements. The study aimed to (1) extract fucoidan from the seaweed Fucus vesiculosus (FV) using an environmentally friendly solvent and compare it with the most commonly used extraction solvent, hydrochloric acid, and (2) assess the impact of ultrasound-assisted depolymerization on reducing the molecular weight of the fucoidan extracts and examine the cytotoxic effect of different molecular weight fractions. The findings indicated that the green depolymerization solvent, in conjunction with a brief ultrasound treatment, effectively reduced the molecular weight. Moreover, a significant decrease in cell viability was observed in selected samples, indicating potential anticancer properties. As a result, ultrasound was determined to be an effective method for depolymerizing crude fucoidan from Fucus Vesiculosus seaweed.


Asunto(s)
Fucus , Polisacáridos , Algas Marinas , Algas Marinas/química , Fucus/química , Anticoagulantes , Solventes
2.
Crit Rev Biotechnol ; 43(6): 904-919, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35786238

RESUMEN

In the modern era, macro-microalgae attract a strong interest across scientific disciplines, owing to the wide application of these cost-effective valuable bioresources in food, fuel, nutraceuticals, and pharmaceuticals etc. The practice of eco-friendly extraction techniques has led scientists to create alternative processes to the conventional methods, to enhance the extraction of the key valuable compounds from macro-microalgae. This review narrates the possible use of novel cell disruption techniques, including use of ionic liquid, deep eutectic solvent, surfactant, switchable solvents, high voltage electrical discharge, explosive decompression, compressional-puffing, plasma, and ozonation, which can enable the recovery of value added substances from macro-microalgae, complying with the principles of green chemistry and sustainability. The above-mentioned innovative techniques are reviewed with respect to their working principles, benefits, and possible applications for macro-microalgae bioactive compound recovery and biofuel. The benefits of these techniques compared to conventional extraction methods include shorter extraction time, improved yield, and reduced cost. Furthermore, various combinations of these innovative technologies are used for the extraction of thermolabile bioactive compounds. The challenges and prospects of the innovative extraction processes for the forthcoming improvement of environmentally and cost-effective macro-microalgal biorefineries are also explained in this review.


Asunto(s)
Microalgas , Microalgas/química , Solventes/química , Electricidad , Suplementos Dietéticos , Biotecnología/métodos , Biomasa
3.
Mar Drugs ; 18(5)2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403273

RESUMEN

This study investigates ultrasound assisted extraction (UAE) process parameters (time, frequency and solvent) to obtain high yields of phlorotannins, flavonoids, total phenolics and associated antioxidant activities from 11 brown seaweed species. Optimised UAE conditions (35 kHz, 30 min and 50% ethanol) significantly improved the extraction yield from 1.5-fold to 2.2-fold in all seaweeds investigated compared to solvent extraction. Using ultrasound, the highest recovery of total phenolics (TPC: 572.3 ± 3.2 mg gallic acid equivalent/g), total phlorotannins (TPhC: 476.3 ± 2.2 mg phloroglucinol equivalent/g) and total flavonoids (TFC: 281.0 ± 1.7 mg quercetin equivalent/g) was obtained from Fucus vesiculosus seaweed. While the lowest recovery of TPC (72.6 ± 2.9 mg GAE/g), TPhC (50.3 ± 2.0 mg PGE/g) and TFC (15.2 ± 3.3 mg QE/g) was obtained from Laminaria digitata seaweed. However, extracts from Fucus serratus obtained by UAE exhibited the strongest 1,1-diphenyl-2-picryl-hydrazyl (DPPH) scavenging activity (29.1 ± 0.25 mg trolox equivalent/g) and ferric reducing antioxidant power (FRAP) value (63.9 ± 0.74 mg trolox equivalent/g). UAE under optimised conditions was an effective, low-cost and eco-friendly technique to recover biologically active polyphenols from 11 brown seaweed species.


Asunto(s)
Antioxidantes/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Polifenoles/aislamiento & purificación , Algas Marinas/química , Taninos/aislamiento & purificación , Antioxidantes/química , Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión , Etanol/química , Fucus/química , Irlanda , Laminaria/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles/farmacología , Solventes/química , Taninos/farmacología , Factores de Tiempo , Ondas Ultrasónicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA